
Database Programming
in

SQL/ORACLE

Wolfgang May

2001

Database Programming in SQL/ORACLE

SQL-3 Standard/ORACLE 8:

• ER-Modeling

• Schema Generation

• Queries

• Views

• Complex attributes, nested tables

• Database Optimization

• Access Control/Authorization

• Transactions

• Updates, Schema Modifications

• Referential Integrity

• PL/SQL: Triggers, Procedures, Functions

• Object-relational Features

• Embedded SQL

• JDBC (Embedding into Java)

Introduction 1



Database Programming in SQL/ORACLE

The Database: M ONDIAL

• Continents
• Countries
• Administrative

Divisions
• Cities
• Organizations

• Mountains
• Rivers
• Lakes
• Seas
• Deserts

• Economy
• Population
• Languages
• Religions
• Ethnic Groups

• CIA World Factbook

• “Global Statistics”: Countries, Adm. Divisions, Cities

• TERRA-Database of the Institut für Programmstrukturen
und Datenorganisation der Universit"at Karlsruhe

• . . . some more Web-Pages

• Data Integration has been done with FLORID
Introduction 2

Database Programming in SQL/ORACLE

Literature

• Textbooks on Databases (in german):

A. Kemper, A. Eickler: Datenbanksysteme - Eine
Einf"uhrung, Oldenbourg, 1996

G. Vossen: Datenmodelle, Datenbanksprachen und
Datenbankmanagement-Systeme. Addison-Wesley, 1994.

• Textbook on SQL (in german):
G. Matthiessen and M. Unterstein: Relationale
Datenbanken und SQL: Konzepte der Entwicklung und
Anwendung. Addison-Wesley, 1997.

• The book on the practical DB training at Uni Karlsruhe with
TERRA:
M. Dürr and K. Radermacher: Einsatz von
Datenbanksystemen. Springer Verlag, 1990.

• Explanation of the SQL-2 Standard:
C. Date and H. Darwen: A guide to the SQL standard: a
user’s guide to the standard relational language SQL.
Addison-Wesley, 1994.

• Textbooks on relational databases and SQL:

H. F. Korth and A. Silberschatz: Database System
Concepts. McGraw-Hill, 1991.

J. Ullman and J. Widom: A First Course in Database
Systems. Prentice Hall, 1997.

and some more ...
Introduction 3



D
at

ab
as

e
P

ro
gr

am
m

in
g

in
S

Q
L/

O
R

A
C

LE

S
em

an
tic

M
od

el
in

g:
E

nt
ity

R
el

at
io

ns
hi

p
M

od
el

(E
R

M
;C

he
n,

19
76

)

S
tr

uc
tu

rin
g

co
nc

ep
ts

fo
r

de
sc

rib
in

g
a

da
ta

ba
se

sc
he

m
a

in
th

e
E

R
M

:

•
E

nt
ity

ty
pe

s
(≡

O
bj

ec
tt

yp
es

)
an

d

•
R

el
at

io
ns

hi
p

ty
pe

s

C
on

tin
en

t

C
ou

nt
ry

P
ro

vi
nc

e

C
ity

O
rg

an
iz

at
io

n

La
ng

ua
ge

R
el

ig
io

n

E
th

ni
c

G
rp

.

R
iv

er
La

ke

S
ea

Is
la

nd

D
es

er
t

M
ou

nt
ai

n

E
R

-M
od

el
4 Database Programming in SQL/ORACLE

Entities and Relationships

Province City

Country Continent

in_Prov

is_capital

belongs to is_capital

encompasses

borders

ER-Model 5



Database Programming in SQL/ORACLE

Entities

Entity type: An entity type represents a concept in the real
world. It is given as a pair (E, {A1, . . . , An}), where E is
the name and {A1, . . . , An}, n ≥ 0 are the attributes (value
properties) of a type.

Attribute: a relevant property of entities of a given type. Each
attribute can have values from a given domain.

Entity: each entity describes a real-world object. Thus, it must
be of one of the defined entity types E. It assigns a value
to each attribute that is declared for the entity type E.

Key attributes: a key is a set of attributes of an entity type,
whose values together allow for a unique identification of all
amongst all entities of a given type (cf. candidate keys,
primary keys).

ER-Model 6

Database Programming in SQL/ORACLE

Entities:

Country

ent.0815

name

Germany

code

D
area

356910

population

83536115

government

federal republic

gross product

1.452.200.000 independence

1871

inflation

2%

Mountain

ent.4711

name

Feldberg

mountains

Black Forest

height

1493.8

geo coord

longitude

7.5

latitude

47.5

ER-Model 7



Database Programming in SQL/ORACLE

Relationships

Relationship type: describes a concept of relationships
between entities. It is given as a triple
(B, {RO1 : E1, . . . , ROk : Ek}, {A1, . . . , An}), where B is
the name, {RO1, . . . , ROk}, k ≥ 2, is a list of roles,
{E1, . . . , Ek} is a list of entity types associated to the roles,
and {A1, . . . , An}, n ≥ 0 is the set of attributes of the
relationship type.

Roles are pairwise different – the associated entity types are
not necessarily pairwise distinct. In case that Ei = Ej for
i 6= j, there is a recursive relationship.

Attribute: relevant properties of relationships of a given type.

Relationship: A relationship of a relationship type B is defined
by the entities that are involved in the relationship,
according to their associated roles. For each role, there is
exactly one entity involved in the relationship, and every
attribute is assigned a value.

ER-Model 8

Database Programming in SQL/ORACLE

Relationships

City Countryin

Freiburg Germany

relationship with attributes

continent Countryencompasses

percent
Europe Russia

20relationship with roles

City Countryis_capitalis of

Berlin Germany

recursive relationship

River flows_into

main river

tributary riverRhein, Main

ER-Model 9



Database Programming in SQL/ORACLE

Complexities of relationships

Every relationship type is assigned a complexity that specifies
the minimal and maximal number of relationships in which an
entity of a given type may be involved.

The complexity degree of a relationship type B wrt. one of its
roles RO is an expression of the form (min, max).

A set b of relationships satisfies the complexity degree
(min, max) of a role RO if for all entities e of the corresponding
entity type, the following holds: there exist at least min and at
most max relationships b in which e is involved in the role RO.

ER-Model 10

Database Programming in SQL/ORACLE

Relationships

Province City

Country Continent

in_Prov< 0, ∗ > < 1, ∗ >

is_capital

< 1, 1 >
< 0, ∗ >

belongs to

< 1, 1 >

< 1, ∗ >

is_capital

< 1, 1 >

< 0, 1 >

encompasses< 1, ∗ > < 1, ∗ >

borders

< 0, ∗ >< 0, ∗ >

ER-Model 11



Database Programming in SQL/ORACLE

Weak Entity Types

A weak entity type is an entity type without a key.

Thus their entities must be identified by the help of another
entity.

• Weak entity types must be involved in at least one
n : 1-relationship with a strong entity type (where the strong
entity type stands on the 1-side).

• They must have a local key, i.e., a set of attributes that can
be extended by the primary keys of the corresponding
strong entity type to provide a key for the weak entity type.

ER-Model 12

Database Programming in SQL/ORACLE

Weak Entity Types

Country

in

< 0, ∗ >

name

area pop.

code

248678 61170500

BRD ent_4711 D

Province

in Prov.

< 0, ∗ >

name

area pop.

35751 10272069

Baden-W.ent_1997

Cityname pop.

longitude latitude

198496

7.8 48

Freiburg ent_0815

There is also a Freiburg/CH

< 1, 1 >

and Freiburg/Elbe, LowerSaxonia (Niedersachsen)

< 1, 1 >

ER-Model 13



Database Programming in SQL/ORACLE

n-ary Relationships:

A river flows into a sea/lake/river; more detailed, this point can
be described by giving one or two countries.

river seaflows into< 0, n > < 0, n >

Country

< 0, n >

Aggregation:

Useful to introduce an Aggregate type mouth:

Mouth

river seaflows into< 0, 1 > < 0, n >

Country

in

< 1, 2 >

< 0, ∗ >

ER-Model 14

Database Programming in SQL/ORACLE

Generalization/Specialization

• Generalization: rivers, lakes, and seas are waters. These
can e.g. be involved in located-at relationships with cities:

Water City

g

River Lake Sea

located< 0, ∗ > < 0, ∗ >name

length depth area depth area

ER-Model 15



Database Programming in SQL/ORACLE

Generalization/Specialization

• Specialization: MONDIAL does not describe all
geographical things, but only rivers, lakes, seas,
mountains, deserts, and islands (no lowlands, highlands,
savannas, fens, etc). All such geographical things have in
common that they are involved in in-relationships with
administrative divisions:

Geo Province

s

River Lake Sea Mountain Island Desert

in< 1, ∗ > < 0, ∗ >name

ER-Model 16

Database Programming in SQL/ORACLE

The Relational Model

• only a single structural concept Relation for entity types
and relationship types,

• Relational Model by Codd (1970): mathematical
foundation: set theory

• a relation schema consists of a name and a set of
attributes,
Continent: Name, Area

• each attribute is associated with a Domain which specifies
the possible values of the attribute. Often, attributes also
can have a null value.
Continent: Name: VARCHAR(25), Area: NUMBER

• elements of a relation are called tuples.
(Asia,4.5E7)

A (relational) database schema R is given by a (finite) set of
(relation) schemata.
Continent: . . . ; Country: . . . ; City: . . .

A (database) state associates each relation schema to a
relation .

The Relational Model 17



Database Programming in SQL/ORACLE

Mapping ERM to RM

Let EER an entity type and BER a relationship type in the ERM.

1. Entity types: (EER, {A1, . . . , An}) −→ E(A1, . . . , An),

2. Relationship types:
(BER, {RO1 : E1, . . . , ROk : Ek}, {A1, . . . , Am}) −→

B(E1_K11, . . . , E1_K1p1
, . . . ,

Ek_Kk1, . . . , Ek_Kkpk
, A1, . . . , Am) ,

where {Ki1, . . . , Kipi
} are the primary keys of Ei, 1 ≤ i ≤ k.

In case that for a relationship type BER, the keys of
involved entity types have coinciding names, the role
specifications may be used to guarantee the uniqueness of
key attributes in the relationship type.

In case that k = 2 and a (1,1) relationship complexity, the
relation schema of the relationship type and that of the
entity type may be merged.

3. For a weak entity type, the key attributes of the identifying
entity type must be added.

4. Aggregate types can be ignored if the underlying
relationship type is mapped.

The Relational Model 18

Database Programming in SQL/ORACLE

Entity types

(EER, {A1, . . . , An}) −→ E(A1, . . . , An)

continentname area

Asia ent_79110 4.5E7

Continent

Name Area

VARCHAR(20) NUMBER

Europe 9562489.6

Africa 3.02547e+07

Asia 4.50953e+07

America 3.9872e+07

Australia 8503474.56

The Relational Model 19



Database Programming in SQL/ORACLE

Relationship Types

(BER, {RO1 : E1, . . . , ROk : Ek}, {A1, . . . , Am}) −→

B(E1_K11, . . . , E1_K1p1
, . . . ,

Ek_Kk1, . . . , Ek_Kkpk
, A1, . . . , Am),

where {Ki1, . . . , Kipi
} are the primary keys of Ei, 1 ≤ i ≤ k. (it

is allowed to rename, e.g., to use Country for Country.Code)

continent Countryencompasses

name

Europe

code

R

percent

20

encompasses

Country Continent Percent

VARCHAR(4) VARCHAR(20) NUMBER

R Europe 20

R Asia 80

D Europe 100

. . . . . . . . .

The Relational Model 20

Database Programming in SQL/ORACLE

Relationship Types

In case that k = 2 and a (1,1) relationship complexity, the
relation schema of the relationship type and that of the entity
type may be merged.

Country

City

is_capital

< 1, 1 >

< 0, 1 >

name

Germany

code

D

name

Berlin

pop.

3472009ent_0815

Country

Name code Population Capital Province ...

Germany D 83536115 Berlin Berlin

Sweden S 8900954 Stockholm Stockholm

Canada CDN 28820671 Ottawa Quebec

Poland PL 38642565 Warsaw Warszwaskie

Bolivia BOL 7165257 La Paz Bolivia

.. .. .. .. ..

The Relational Model 21



Database Programming in SQL/ORACLE

Weak Entity Types

For a weak entity type, the key attributes of the identifying entity type
must be added.

Country

in

name

area pop.

code

248678 61170500

BRD ent_4711 D

Province

in Prov.

name

area pop.

35751 10272069

Baden-W.ent_1997

Cityname pop.

198496Freiburg ent_0815

< 1, 1 >

< 1, 1 >

City

Name Country Province Population ...

Freiburg D Baden-W. 198496 ..

Berlin D Berlin 3472009 ..

.. .. .. .. ..

The Relational Model 22

Database Programming in SQL/ORACLE

Relationship Types

In case that for a relationship type B, the keys of involved entity
types have coinciding names, the role specifications may be
used to guarantee the uniqueness of key attributes in the
relationship type.

Countrycode name

borders

< 0, ∗ >

C1

< 0, ∗ >

C2

borders

Country1 Country2

D F

D CH

CH F

.. ..

The Relational Model 23



Database Programming in SQL/ORACLE

SQL = Structured Query Language

• common query language

• standardization: SQL-89, SQL-2 (1992), SQL-3 (1996)

• SQL-2 in 3 stages: entry, intermediate, and full level

• SQL-3: object-orientation

• descriptive querying language

• results are always sets of tuples (relations)

• implementation: ORACLE (and many others)

• SQL is case-insensitive, i.e., CITY=city=City=cItY.

• inside quotes, SQL is not case-insensitive, i.e., City=’Berlin’
6= City=’berlin’.

• every command has to be ended with a semicolon “;”

• comment lines are embraced in /∗ . . . ∗/, or introduced by
-- or rem.

SQL-2 24

Database Programming in SQL/ORACLE

Data Dictionary: Contains meta data about the database

Database Language:

DDL: Data Definition Language for defining schema

• tables
• views
• indexes
• integrity constraints

DML: Data Manipulation Language for manipulating
database states

• Search/Read
• Insert
• Modify
• Delete

SQL-2 25



Database Programming in SQL/ORACLE

Data Dictionary

Consists of tables and views that contain meta data about the
database.

With SELECT * FROM DICTIONARY (abbrev. SELECT * FROM

DICT),the Data Dictionary explains itself.

TABLE_NAME

COMMENTS

ALL_ARGUMENTS

Arguments in objects accessible to the user

ALL_CATALOG

All tables, views, synonyms, sequences accessible to the user

ALL_CLUSTERS

Description of clusters accessible to the user

ALL_CLUSTER_HASH_EXPRESSIONS

Hash functions for all accessible clusters
...

Data Dictionary 26

Database Programming in SQL/ORACLE

Data Dictionary

ALL_OBJECTS: contains all objects that are accessible for a
user.

ALL_CATALOG: contains all tables, views, and synonyms that
are accessible for a user.

ALL_TABLES: contains all tables that are accessible for a user.

Analogously for several other things. (select * from

ALL_CATALOG where TABLE_NAME LIKE ’ALL%’;).

USER_OBJECTS: contains all objects that where the user is the
owner.

Analogously for other database object types, in most case
there is also an abbreviation for USER_..., e.g. OBJ for
USER_OBJECTS.

ALL_USERS: contains informations about all users of the
database.

Data Dictionary 27



Database Programming in SQL/ORACLE

SELECT table_name FROM tabs;

Table_name

BORDERS

CITY

CONTINENT

COUNTRY

DESERT

ECONOMY

ENCOMPASSES

ETHNIC_GROUP

GEO_DESERT

GEO_ISLAND

GEO_LAKE

GEO_MOUNTAIN

GEO_RIVER

GEO_SEA

Table_name

ISLAND

LAKE

LANGUAGE

LOCATED

IS_MEMBER

MERGES_WITH

MOUNTAIN

ORGANIZATION

POLITICS

POPULATION

PROVINCE

RELIGION

RIVER

SEA

28 rows selected.

Data Dictionary 28

Database Programming in SQL/ORACLE

The schema of individual tables and views can be displayed by
using DESCRIBE <table> or abbreviated DESC <table>:

DESC City;

Name NULL? Typ

NAME NOT NULL VARCHAR2(25)

COUNTRY NOT NULL VARCHAR2(4)

PROVINCE NOT NULL VARCHAR2(35)

POPULATION NUMBER

LONGITUDE NUMBER

LATITUDE NUMBER

Data Dictionary 29



Database Programming in SQL/ORACLE

Queries: SELECT-FROM-WHERE

Queries against the database are in SQL formulated by the
SELECT command. Its basic structure is simple:

SELECT Attributes

FROM Relation(s)

WHERE Condition

Simplest form: all columns and rows of a relation

SELECT * FROM City;

Name C. Province Pop. Long. Lat.

...
...

...
...

...
...

Vienna A Vienna 1583000 16,3667 48,25

Innsbruck A Tyrol 118000 11,22 47,17

Stuttgart D Baden-W. 588482 9.1 48.7

Freiburg D Germany 198496 NULL NULL
...

...
...

...
...

...

3114 rows selected.

SQL: Queries 30

Database Programming in SQL/ORACLE

Projection: Choose some columns

SELECT <attr-list>

FROM <table>;

For all cities, give its name and the country to which it belongs:

SELECT Name, Country

FROM City;

Name COUNTRY

Tokyo J

Stockholm S

Warsaw PL

Cochabamba BOL

Hamburg D

Berlin D

.. ..

SQL: Queries 31



Database Programming in SQL/ORACLE

DISTINCT

SELECT * FROM Island;

Name Islands Area ...

...
...

...
...

Jersey Channel Islands NULL . . .

Mull Inner Hebrides 910 . . .

Montserrat Antilles 106 . . .

Grenada Antilles NULL . . .
...

...
...

...

SELECT Islands

FROM Island;

Islands
...

Channel Islands

Inner Hebrides

Antilles

Antilles
...

SELECT DISTINCT Islands

FROM Island;

Islands
...

Channel Islands

Inner Hebrides

Antilles
...

SQL: Queries 32

Database Programming in SQL/ORACLE

Duplicate Elimination

• Duplicates are not automatically eliminated:

– duplicate elimination is expensive (sorting and deleting)

– user may be interested in duplicates

– later: aggregate functions on relations with duplicates

• Duplicate elimination: DISTINCT-clause

• later: Duplicates are automatically eliminated when set
operations UNION, INTERSECT, ... are used

SQL: Queries 33



Database Programming in SQL/ORACLE

Selections: Choose some rows

SELECT <attr-list>

FROM <table>

WHERE <predicate>;

<predicate> may be of the following forms:

• <attribute> <op> <value> with op ∈ {=, <, >, <=, >=},

• <attribute> [NOT] LIKE <string>, where each underscore
in the string stands for an arbitrary character, and “%”
stands for arbitrary many characters,

• <attribute> IN <value-list>, where <value-list> is either of
the form (’val1’,. . . ,’valn’), or may be given as the result of a
subquery,

• [NOT] EXISTS <subquery>

• NOT (<predicate>),

• <predicate> AND <predicate>,

• <predicate> OR <predicate>.

SQL: Queries 34

Database Programming in SQL/ORACLE

Example:

SELECT Name, Country, Population

FROM City

WHERE Country = ’J’;

Name Country Population

Tokyo J 7843000

Kyoto J 1415000

Hiroshima J 1099000

Yokohama J 3256000

Sapporo J 1748000
...

...
...

Example:

SELECT Name, Country, Population

FROM City

WHERE Country = ’J’ AND Population > 2000000

Name Country Population

Tokyo J 7843000

Yokohama J 3256000

SQL: Queries 35



Database Programming in SQL/ORACLE

Example:

SELECT Name, Country, Population

FROM City

WHERE Country LIKE ’%J_%’;

Name Country Population

Kingston JA 101000

Amman JOR 777500

Suva FJI 69481
...

...
...

The requirement that the “J” is followed by at least one
character excludes japanese cities (“J”) from the result.

SQL: Queries 36

Database Programming in SQL/ORACLE

ORDER BY

SELECT Name, Country, Population

FROM City

WHERE Population > 5000000

ORDER BY Population DESC; (descending)

Name Country Population

Seoul ROK 10.229262

Mumbai IND 9.925891

Karachi PK 9.863000

Mexico MEX 9.815795

Sao Paulo BR 9.811776

Moscow R 8.717000
...

...
...

SQL: Queries 37



Database Programming in SQL/ORACLE

ORDER BY, Alias

SELECT Name, Population/Area AS Density

FROM Country

ORDER BY 2 ; (Default: ascending)

Name Density

Western Sahara ,836958647

Mongolia 1,59528243

French Guiana 1,6613956

Namibia 2,03199228

Mauritania 2,26646745

Australia 2,37559768

SQL: Queries 38

Database Programming in SQL/ORACLE

Aggregate functions

• COUNT (*| [DISTINCT] <attribute>)

• MAX (<attribute>)

• MIN (<attribute>)

• SUM ([DISTINCT] <attribute>)

• AVG ([DISTINCT] <attribute>)

Example: How many cities are stored in the database?

SELECT Count (*)

FROM City;

Count(*)

3114

Example: How many countries are stored in the database for
which at least one city with more than 1,000,000 inhabitants is
stored?

SELECT Count (DISTINCT Country)

FROM City

WHERE Population > 1000000;

Count(DISTINCT(Country))

68

Aggregate functions 39



Database Programming in SQL/ORACLE

Aggregate functions

Example: Compute the sum of the population of all Austrian
cities, and the number of inhabitants of Austria’s largest city.

SELECT SUM(Population), MAX(Population)

FROM City

WHERE Country = ’A’;

SUM(Population) MAX(Population)

2434525 1583000

And what, if these values are needed for each of the
countries??

Aggregate functions 40

Database Programming in SQL/ORACLE

Grouping

GROUP BY conputes one row for every group. This group
contains data that is obtained by using aggregate functions
over all rows of the group.

SELECT <expr-list>

FROM <table>

WHERE <predicate>

GROUP BY <attr-list>;

returns for every value of <attr-list> a single row. Thus, in
<expr-list> only the following expressions are allowed:

• constants,

• attribute from <attr-list>,

• attribute, which have the same value for all rows in such a
group (e.g. Code, if <attr-list> contains Country),

• Aggregate functions, which are then applied to all tuples of
the corresponding group.

The WHERE clause <predicate> contains only attributes of the
relations mentioned in <table> (i.e., no aggregate functions).

Grouping 41



Database Programming in SQL/ORACLE

Grouping

Example: For every country, return the number of inhabitants
that live in cities.

SELECT Country, Sum(Population)

FROM City

GROUP BY Country;

Country SUM(Population)

A 2434525

AFG 892000

AG 36000

AL 475000

AND 15600
...

...

Grouping 42

Database Programming in SQL/ORACLE

Conditions over Groups

The HAVING clause allows to state additional conditions on the
groups:

SELECT <expr-list>

FROM <table>

WHERE <predicate1>

GROUP BY <attr-list>

HAVING <predicate2>;

• WHERE clause: conditions on individual tuples before
grouping,

• HAVING clause: conditions to select groups for the result. In
the HAVING clause, in addition to aggregate function
expressions over attributes, only those attributes are
allowed that are mentioned explicitly in the GROUP BY

clause.

Grouping 43



Database Programming in SQL/ORACLE

Conditions on Groups

Example: Compute for each country the total number of
inhabitants that live in cities with more than 100,000
inhabitants. Output only those countries where this number is
more than 10 millions.

SELECT Country, SUM(Population)

FROM City

WHERE Population > 10000

GROUP BY Country

HAVING SUM(Population) > 10000000;

Country SUM(Population)

AUS 12153500

BR 77092190

CDN 10791230

CO 18153631
...

...

Grouping 44

Database Programming in SQL/ORACLE

Set Operations

SQL queries can be joined by set operations:

<select-clause> <set-op> <select-clause>;

• UNION [ALL]

• MINUS [ALL]

• INTERSECT [ALL]

• automatical elemination of duplicates (can be prevented by
ALL)

Example: Give all names of cities that also occur as names of
countries:

(SELECT Name

FROM City)

INTERSECT

(SELECT Name

FROM Country);

Name

Armenia

Djibouti

Guatemala
...

Set Operations 45



Database Programming in SQL/ORACLE

Join Queries

Join queries provide a possibility to combine several relations
into a query.

SELECT <attr-list>

FROM <table-list>

WHERE <predicate>;

Basically, a join is based on the cartesian product of the
contributing relations (Theory: see “Introduction to
Databases”).

• resulting attributes: union of all attributes of contributing
relations

• attributes that occur in several relations must be qualified
by <table>.<attr>.

• join of a relation with itself – aliases.

Join Queries 46

Database Programming in SQL/ORACLE

Example: All countries that have less inhabitants than Tokyo.

SELECT Country.Name, Country.Population

FROM City, Country

WHERE City.Name = ’Tokyo’

AND Country.Population < City.Population;

Name Einwohner

Albania 3249136

Andorra 72766

Liechtenstein 31122

Slovakia 5374362

Slovenia 1951443
...

...

Join Queries 47



Database Programming in SQL/ORACLE

Equijoin

Example: For all organizations, give the continents where they
are seated.

encompasses: Country, Continent, Percentage.

Organization: Abbreviation, Name, City, Country, Province.

SELECT Continent, Abbreviation

FROM encompasses, Organization

WHERE encompasses.Country = Organization.Country;

Name Organization

America UN

Europe UNESCO

Europe CCC

Europe EU

America CACM

Australia/Oceania ANZUS
...

...

Join Queries 48

Database Programming in SQL/ORACLE

Join of a relation with itself

Example: Compute all pairs of cities in different countries
which have the same name.

SELECT A.Name, A.Country, B.Country

FROM City A, City B

WHERE A.Name = B.Name

AND A.Country < B.Country;

A.Name A.Country B.Country

Alexandria ET RO

Alexandria ET USA

Alexandria RO USA

Barcelona E YV

Valencia E YV

Salamanca E MEX
...

...
...

Join Queries 49



Database Programming in SQL/ORACLE

Subqueries

The WHERE clause can contain results of subqueries:

SELECT <attr-list>

FROM <table>

WHERE <attribute> (<op> [ANY|ALL]| IN) <subquery>;

• <subquery> is a SELECT query (Subquery),

• for <op> ∈ {=, <, >, <=, >=}, <subquery> must result in a
relation with a single column,

• for IN <subquery>, also multi-column results are allowed
(since ORACLE 8),

• for <op> without ANY or ALL, the result of <subquery> must
contain only a single row.

Subqueries 50

Database Programming in SQL/ORACLE

Uncorrelated Subquery

• independent from the values of the tuple which is currently
processed in the surrounding query,

• evaluated once before the surrounding query,

• the result is then used for evaluating the WHERE clause of
the surrounding query,

• strictly sequential evaluation, thus, the qualification of
multiply occurring attributes is not necessary.

Example: Give all countries where there exists a city with
name “Victoria”:

SELECT Name

FROM Country

WHERE Code IN

(SELECT Country

FROM City

WHERE Name = ’Victoria’);

Country.Name

Canada

Seychelles
Subqueries 51



Database Programming in SQL/ORACLE

Uncorrelated Subquery with IN

Example: Give all cities that are known to be situated at a
river, lake, or a sea:

SELECT *

FROM CITY

WHERE (Name,Country,Province)

IN (SELECT City,Country,Province

FROM located);

Name Country Province Population ...

Ajaccio F Corse 53500 . . .

Karlstad S Värmland 74669 . . .

San Diego USA California 1171121 . . .
...

...
...

Subqueries 52

Database Programming in SQL/ORACLE

Subquery with ALL

Example: ALL can e.g. be used for computing all countries that
are smaller than all countries that have more than 10 million
inhabitants:

SELECT Name,Area,Population

FROM Country

WHERE Area < ALL

(SELECT Area

FROM Country

WHERE Population > 10000000);

Name Area Population

Albania 28750 3249136

Macedonia 25333 2104035

Andorra 450 72766
...

...
...

Subqueries 53



Database Programming in SQL/ORACLE

Correlated Subquery

• Subquery depends on attribute values of the tuple which is
currently processed in the outer query,

• evaluated once for every tuple of the surrounding query,

• imported attributes must be qualified.

Example: Compute all cities where more than 1/4 of the
population of the corresponding country is living.

SELECT Name, Country

FROM City

WHERE Population * 4 >

(SELECT Population

FROM Country

WHERE Code = City.Country);

Name Country

Copenhagen DK

Tallinn EW

Vatican City V

Reykjavik IS

Auckland NZ
...

...

Subqueries 54

Database Programming in SQL/ORACLE

The EXISTS Operator

EXISTS and NOT EXISTS simulate the existential quantifier.

SELECT <attr-list>

FROM <table>

WHERE [NOT] EXISTS

(<select-clause>);

Example: Compute all countries for which cities with more
than 1,000,000 inhabitants are stored.

SELECT Name

FROM Country

WHERE EXISTS

( SELECT *

FROM City

WHERE Population > 1000000

AND City.Country = Country.Code) ;

Name

Serbia and Montenegro

France

Spain

Austria
...

Subqueries 55



Database Programming in SQL/ORACLE

Transformation EXISTS, Subquery, Join

Equivalent to the previous one are the following queries:

SELECT Name

FROM Country

WHERE Code IN

( SELECT Country

FROM City

WHERE City.Population > 1000000);

SELECT DISTINCT Country.Name

FROM Country, City

WHERE City.Country = Country.Code

AND City.Population > 1000000;

Subqueries 56

Database Programming in SQL/ORACLE

Example

A country is strongly urbanized if more than 10 percent of its
population live in cities with more than 500,000 inhabitants.
Which member countries of the EU are strongly urbanized?

SELECT Country.Name

FROM Country, City, is_member

WHERE Organization = ’EU’

AND is_member.Country = Country.Code

AND is_member.Type = ’member’

AND City.Population > 500000

AND City.Country = Country.Code

GROUP BY Country.Name, Country.Population

HAVING (SUM(City.Population)/Country.Population) > 0.1;

Name

Austria

Denmark

Germany

Ireland

Italy

Netherlands

Spain

United Kingdom

Subqueries 57



Database Programming in SQL/ORACLE

Subqueries in the FROM Clause

SELECT <attr-list>

FROM <table/subquery-list>

WHERE <condition>;

Values which are obtained in different ways from different
tables can be related.

Example: Compute the total number of people who do not live
in the stored cities.

SELECT Population - Urban_Residents

FROM

(SELECT SUM(Population) AS Population

FROM Country),

(SELECT SUM(Population) AS Urban_Residents

FROM City);

Population-Urban_Residents

4620065771

Subqueries 58

Database Programming in SQL/ORACLE

Subqueries in the FROM Clause

... especially suitable for nested computations with aggregate
functions

Example: Compute the total number of people who live in the
largest city of their countries.

SELECT sum(pop_biggest)

FROM (SELECT country, max(population) as pop_biggest

FROM City

GROUP BY country);

sum(pop_biggest)

273837106

Subqueries 59



Database Programming in SQL/ORACLE

Schema Definition

• the database schema contains all information about the
structure of the database,

• tables, views, constraints, indexes, clusters, triggers ...

• ORACLE 8: datatypes, methods

• is defined and modified using the DDL (Data Definition
Language),

• CREATE, ALTER, and DROP of schema objects,

• access rights: GRANT.

Schema Definition 60

Database Programming in SQL/ORACLE

Generation of Tables

CREATE TABLE <table>

(<col> <datatype>,
...

<col> <datatype>)

CHAR(n): string with fixed length n.

VARCHAR2(n): string with variable length ≤ n.
||: string concatenation.

NUMBER: numbers. for NUMBER, the usual operators +, −, ∗, and
/, and the comparisons =, >, >=, <=, and < are allowed.
Additionally there is BETWEEN x AND y.
Inequality: ! =, ∧ =, ¬ =, or <>.

DATE: Dates and times: Century – Year – Month – Day – Hour
– Minute – Second. There is also arithmetics and some
more functions for these datatypes.

additional Datatypes are described in the manual.

Schema Definition 61



Database Programming in SQL/ORACLE

Table Definition

The below SQL statement generates the City relation (still
without integrity constraints):

CREATE TABLE City

( Name VARCHAR2(35),

Country VARCHAR2(4),

Province VARCHAR2(32),

Population NUMBER,

Longitude NUMBER,

Latitude NUMBER );

Schema Definition 62

Database Programming in SQL/ORACLE

Definition of Tables: Constraints

With the definition of tables, properties and constraints on the
attribute values can be specified.

• Constraints on a single or on several attributes:

• Constraints on the domain,

• Specification of default values,

• NULL values allowed or not,

• Specification of key constraints,

• Predicates over each individual tuple.

Syntax:

CREATE TABLE <table>

(<col> <datatype> [DEFAULT <value>]

[<colConstraint> ... <colConstraint>],
...

<col> <datatype> [DEFAULT <value>]

[<colConstraint> ... <colConstraint>],

[<tableConstraint>,]
...

[<tableConstraint>])

• <colConstraint> concerns only a single column,

• <tableConstraint> can concern several columns.
Schema Definition 63



Database Programming in SQL/ORACLE

Definition of Tables: Default Values

DEFAULT <value>

A member country of an organization is assumed to be a full
member if nothing else is specified:

CREATE TABLE is_member

( Country VARCHAR2(4),

Organization VARCHAR2(12),

Type VARCHAR2(30)

DEFAULT ’member’)

INSERT INTO is_member VALUES

(’CZ’, ’EU’, ’membership applicant’);

INSERT INTO is_member (Land, Organization)

VALUES (’D’, ’EU’);

Country Organization Type

CZ EU membership applicant

D EU member
...

...
...

Schema Definition 64

Database Programming in SQL/ORACLE

Definition of Tables: Constraints

Two types of constraints:

• A column condition <colConstraint> is a condition that is
concerned only with a single column (to which it is
associated)

• A table condition <tableConstraint> may concern several
columns.

Each <colConstraint> or <tableConstraint> is of the form

[CONSTRAINT <name>] <condition>

Schema Definition 65



Database Programming in SQL/ORACLE

Definition of Tables: Conditions (Overview)

Syntax:

[CONSTRAINT <name>] <condition>

Keywords in <condition>:

1. CHECK (<condition>): no line is allowed to violate
<condition>. NULL values result in an unknown that does
not violate any check condition.

2. [NOT] NULL: indicates whether a column is allowed to
contain null values (only as <colConstraint>).

3. UNIQUE (<column-list>): requires every value in a
column to be unique (wrt. all tuples in this table).

4. PRIMARY KEY (<column-list>): Declares the given
columns as primary keys of this table.

5. FOREIGN KEY (<column-list>) REFERENCES

<table>(<column-list2>) [ON DELETE CASCADE|ON

DELETE SET NULL]:
declares a set of attributes to be a foreign key.

Schema Definition 66

Database Programming in SQL/ORACLE

Definition of Tables: Syntax

[CONSTRAINT <name>] <condition>

where CONSTRAINT <name> is optional (otherwise, an internal
name is assigned).

• <name> is needed for NULL-, UNIQUE-, CHECK-, and
REFERENCES-constraints, if the constraint should be
changed or deleted eventually,

• PRIMARY KEY can be changed or deleted without having an
explicit name.

Since for a <colConstraint>, the column is implicitly known,
the (<column-list>) part is omitted.

Schema Definition 67



Database Programming in SQL/ORACLE

Definition of Tables: CHECK Constraints

• as column constraints: domain constraint

CREATE TABLE City

( Name VARCHAR2(35),

Population NUMBER CONSTRAINT CityPop

CHECK (Population >= 0),

...);

• as table constraints: arbitrary integrity constraints on the
values of each individual tuple.

Schema Definition 68

Database Programming in SQL/ORACLE

Definition of Tables: PRIMARY KEY, UNIQUE, and
NULL

• PRIMARY KEY (<column-list>): declares these columns
to be the primary key of a table.

• PRIMARY KEY is equivalent to combining UNIQUE and NOT

NULL.

• UNIQUE is not necessarily violated by NULL values, whereas
PRIMARY KEY forbids NULL values.

One Two

a b

a NULL

NULL b

NULL NULL

satisfies UNIQUE (One,Two).

• Since for each table, only one PRIMARY KEY may be
defined, candidate keys must be specified by NOT NULL and
UNIQUE.

Relation Country : Code is the PRIMARY KEY, Name is a
candidate key:

CREATE TABLE Country

( Name VARCHAR2(32) NOT NULL UNIQUE,

Code VARCHAR2(4) PRIMARY KEY);

Schema Definition 69



Database Programming in SQL/ORACLE

Definition of Tables: FOREIGN KEY ...REFERENCES

• FOREIGN KEY (<column-list>) REFERENCES

<table>(<column-list2>) [ON DELETE CASCADE|ON

DELETE SET NULL]: declares the attribute tuple
<column-list> of the table to be a foreign key that
references the attribute tuple <column-list2> of the table
<table>.

• The referenced attribute tuple <table>(<column-list2>)

must be declared as PRIMARY KEY of <table>.

• A REFERENCES condition is not violated by NULL values.

• ON DELETE CASCADE|ON DELETE SET NULL: referential
action (later).

CREATE TABLE is_member

(Country VARCHAR2(4)

REFERENCES Country(Code),

Organization VARCHAR2(12)

REFERENCES Organization(Abbreviation),

Type VARCHAR2(30) DEFAULT ’member’);

Schema Definition 70

Database Programming in SQL/ORACLE

Definition of Tables: Foreign Keys

A mountain is located in a province of come country:

Country

Mountain Province

belongs_to

in

Name

Code

Name

CREATE TABLE geo_Mountain

( Mountain VARCHAR2(20)

REFERENCES Mountain(Name),

Country VARCHAR2(4) ,

Province VARCHAR2(32) ,

CONSTRAINT GMountRefsProv

FOREIGN KEY (Country,Province)

REFERENCES Province (Country,Name));

Schema Definition 71



Database Programming in SQL/ORACLE

Definition of Tables

Complete definition of the table City, including conditions and
keys:

CREATE TABLE City

( Name VARCHAR2(35),

Country VARCHAR2(4)

REFERENCES Country(Code),

Province VARCHAR2(32) – + <tableConstraint>

Population NUMBER CONSTRAINT CityPop

CHECK (Population >= 0),

Longitude NUMBER CONSTRAINT CityLong

CHECK ((Longitude >= -180) AND (Longitude <= 180)),

Latitude NUMBER CONSTRAINT CityLat

CHECK ((Latitude >= -90) AND (Latitude <= 90)),

CONSTRAINT CityKey

PRIMARY KEY (Name, Country, Province),

FOREIGN KEY (Country,Province)

REFERENCES Province (Country,Name));

• if a table is generated with a REFERENCES

<table>(<column-list>) clause, <table> must already
be defined, and <column-list> must be declared as
PRIMARY KEY.

Schema Definition 72

Database Programming in SQL/ORACLE

Views

• Virtual tables

• are not computed at the time of their definition, but are

• computed each time when they are accessed.

• mirror the current state of the database.

• modifications (of the data) are restricted.

CREATE [OR REPLACE] VIEW <name> (<column-list>) AS

<select-clause>;

Example: A user ofte needs the information in which country
some city is located, but is not interested in country codes and
population:

CREATE VIEW CityCountry (City, Country) AS

SELECT City.Name, Country.Name

FROM City, Country

WHERE City.Country = Country.Code;

If a user now searches for all cities in Cameroon, he can state
the following query:

SELECT *

FROM CityCountry

WHERE Country = ’Cameroon’;

Views 73



Database Programming in SQL/ORACLE

Deleting Tables and Views

• tables and views are deleted with DROP TABLE or DROP
VIEW:

DROP TABLE <table-name> [CASCADE CONSTRAINTS];

DROP VIEW <view-name>;

• tables need not to be empty when they are deleted.

• it is not possible to delete a table that contains referenced
tuples.

• a table which is still a target of a REFERENCES declaration
cannot be deleted by a simple DROP TABLE command.

• with DROP TABLE <table> CASCADE CONSTRAINTS a table
is deleted together with all referential integrity constraints
that point to it.

Modification of Tables and Views

later.

Deleting Tables and Views 74

Database Programming in SQL/ORACLE

Inserting Information

• INSERT statement.

• insert individual tuples manually,

INSERT INTO <table>[(<column-list>)]

VALUES (<value-list>);

or

• insert the result of a query:

INSERT INTO <table>[(<column-list>)]

<subquery>;

• remaining columns are filled with null values.

E.g., insert the subsequent tuple:

INSERT INTO Country (Name, Code, Population)

VALUES (’Lummerland’, ’LU’, 4);

A table Metropolis (Name, Country, Population) can be
populated by the following statement:

INSERT INTO Metropolis

SELECT Name, Country, Population

FROM City

WHERE Population > 1000000;

Inserting Information 75



Database Programming in SQL/ORACLE

Deletion of Tuples

Tuples can be deleted with the DELETE command:

DELETE FROM <table>

WHERE <predicate>;

With an empty WHERE clause, all tuples of a table are deleted
(the table itself remains, it can be removed with DROP TABLE):

DELETE FROM City;

The below command deletes all cities that have less than
50,000 inhabitants:

DELETE FROM City

WHERE Population < 50000;

Inserting Information 76

Database Programming in SQL/ORACLE

Modifying Tuples

UPDATE <table>

SET <attribute> = <value> | (<subquery>),
...

<attribute> = <value> | (<subquery>),

(<attribute-list>) = (<subquery>),
...

(<attribute-list>) = (<subquery>)

WHERE <predicate>;

Example:

UPDATE City

SET Name = ’Leningrad’,

Population = Population + 1000,

WHERE Name = ’Sankt-Peterburg’;

Beispiel: Set the total population of each country to the sum of
the population of its administrative divisions:

UPDATE Country

SET Population = (SELECT SUM(Population)

FROM Province

WHERE Province.Country=Country.Code);

Modifying Tuples 77



Database Programming in SQL/ORACLE

Date and Time

The DATE datatype stores century, year, month, day, hour,
minute, second.

• Set input format by NLS_DATE_FORMAT,

• Default: ’DD-MON-YY’ e.g., ’20-Oct-97’.

CREATE TABLE Politics

( Country VARCHAR2(4),

Independence DATE,

Government VARCHAR2(120));

ALTER SESSION SET NLS_DATE_FORMAT = ’DD MM YYYY’;

INSERT INTO politics VALUES

(’B’,’04 10 1830’,’constitutional monarchy’);

All countries that have been founded between 1200 and 1600:

SELECT Country, Independence

FROM Politics

WHERE Independence BETWEEN

’01 01 1200’ AND ’31 12 1599’;

Land Datum

MC 01 01 1419

NL 01 01 1579

E 01 01 1492

THA 01 01 1238

Date and Time 78

Database Programming in SQL/ORACLE

Date and Time

ORACLE provides some functions for working with DATE

information:

• SYSDATE returns the current date/time.

• addition und subtraction of absolute values over DATE is
allowed. Numbers are interpreted as days: SYSDATE + 1 is
tomorrow, SYSDATE + (10/1440) is “in ten minutes”.

• ADD_MONTHS(d, n) adds n months to a date d.

• LAST_DAY(d) yields the last day of a the month to which d

belongs.

• MONTHS_BETWEEN(d1,d2) returns the number of months
between two dates.

Date and Time 79



Database Programming in SQL/ORACLE

Object Orientation in O RACLE 8

• complex data types:

Mountain

name

height

geo coord

longitude

latitude

• nested tables:

Nested_Languages

Country Languages

D German 100

CH German 65

French 18

Italian 12

Romansch 1

FL NULL

F French 100
...

...

• objects, methods, object tables, object references ...
(later)

Complex Data Types 80

Database Programming in SQL/ORACLE

Generation of Data Types

New class of schema objects: CREATE TYPE

• CREATE [OR REPLACE] TYPE <name> AS OBJECT

(<attr> <datatype>,
...

<attr> <datatype>);

For “full” objects, there is also a
CREATE TYPE BODY ... where the methods are defined in
PL/SQL ... later.

Without body/methods, simply complex datatypes are
generated (similar to Records).

• CREATE [OR REPLACE] TYPE <name>

AS TABLE OF <datatype>

(“Collection”, tables as data types)

Complex Data Types 81



Database Programming in SQL/ORACLE

Complex Data Types

Geographical coordinates:

CREATE TYPE GeoCoord AS OBJECT

( Longitude NUMBER,

Latitude NUMBER);

/

CREATE TABLE Mountain

( Name VARCHAR2(20),

Height NUMBER,

Coordinates GeoCoord);

CREATE TYPE <type> AS OBJECT (...) automatically defines
a Constructor method <type>:

INSERT INTO Mountain

VALUES (’Feldberg’, 1493, GeoCoord(8,48));

SELECT * FROM Mountain;

Name Height Coordinates(Longitude, Latitude)

Feldberg 1493 GeoCoord(8,48)

Complex Data Types 82

Database Programming in SQL/ORACLE

Complex Data Types

Access to individual components of complex attributes uses the
common dot-Notation (similar to records).
ORACLE 8.0: only with qualification:

SELECT Name, B.Coordinates.Longitude,

B.Coordinates.Latitude

FROM Mountain B;

Name Coordinates.Longitude Coordinates.Latitude

Feldberg 8 48

Complex Data Types 83



Database Programming in SQL/ORACLE

Nested Tables

CREATE [OR REPLACE] TYPE <inner_type>

AS OBJECT (...);

/

CREATE [OR REPLACE] TYPE <inner_table_type> AS

TABLE OF <inner_type>;

/

CREATE TABLE <table_name>

(... ,

<table-attr> <inner_table_type> ,

... )

NESTED TABLE <table-attr> STORE AS <name >;

CREATE TYPE Language_T AS OBJECT

( Name VARCHAR2(50),

Percentage NUMBER );

/

CREATE TYPE Languages_list AS

TABLE OF Language_T;

/

CREATE TABLE NLanguage

( Country VARCHAR2(4),

Languages Languages_list)

NESTED TABLE Languages STORE AS Languages_nested;

Nested Tables 84

Database Programming in SQL/ORACLE

Nested Tables

CREATE TYPE Language_T AS OBJECT

( Name VARCHAR2(50),

Percentage NUMBER );

/

CREATE TYPE Languages_list AS

TABLE OF Language_T;

/

CREATE TABLE NLanguage

( Country VARCHAR2(4),

Languages Languages_list)

NESTED TABLE Languages STORE AS Languages_nested;

Again: constructor methods

INSERT INTO NLanguage

VALUES( ’SK’,

Languages_list

( Language_T(’Slovak’,95),

Language_T(’Hungarian’,5)));

Nested Tables 85



Database Programming in SQL/ORACLE

Nested Tables

SELECT *

FROM NLanguage

WHERE Country=’CH’;

Country Languages(Name, Percentage)

CH Languages_List(Language_T(’French’, 18),

Language_T(’German’, 65),

Language_T(’Italian’, 12),

Language_T(’Romansch’, 1))

SELECT Languages

FROM NLanguage

WHERE Country=’CH’;

Languages(Name, Percentage)

Languages_List(Language_T(’French’, 18),

Language_T(’German’, 65),

Language_T(’Italian’, 12),

Language_T(’Romansch’, 1))

Nested Tables 86

Database Programming in SQL/ORACLE

Querying Contents of Nested Tables

Contents of inner tables:

THE (SELECT <table-attr> FROM ...)

SELECT ...

FROM THE (<select-statement>)

WHERE ... ;

INSERT INTO THE (<select-statement>)

VALUES ... / SELECT ... ;

DELETE FROM THE (<select-statement>)

WHERE ... ;

SELECT Name, Percentage

FROM THE( SELECT Languages

FROM NLanguage

WHERE Country=’CH’);

Name Percentage

German 65

French 18

Italian 12

Romansch 1

Nested Tables 87



Database Programming in SQL/ORACLE

Copying Nested Tables

Nested tables can be inserted “as a whole” if the set of tuples is
structured (casted) as a collection:

CAST(MULTISET(SELECT ...) AS <nested-table-type>)

INSERT INTO NLanguage -- allowed, but wrong !!!!

(SELECT Country,

CAST(MULTISET(SELECT Name, Percentage

FROM Language

WHERE Country = A.Country)

AS Languages_List)

FROM Language A);

each tuple (country, languageList) n-times
(n = number of languages in this country) !!

INSERT INTO NLanguage (Country)

(SELECT DISTINCT Country

FROM Language);

UPDATE NLanguage B

SET Languages =

CAST(MULTISET(SELECT Name, Percentage

FROM Language A

WHERE B.Country = A.Country)

AS Languages_List);

Nested Tables 88

Database Programming in SQL/ORACLE

Nested Tables

If a query already results in a table, this can be inserted as a
whole:

INSERT INTO <table>

VALUES (..., THE ( SELECT <attr>

FROM <table’>

WHERE ...) );

INSERT INTO NLanguage VALUES

(’CHXX’, THE (SELECT Languages from NLanguage

WHERE Country=’CH’));

Nested Tables 89



Database Programming in SQL/ORACLE

Working with Nested Tables

Not too simple ... (ORACLE 8.0)

• Subquery may only return a single nested table. ⇒ not
possible to select an inner table, depending on the
surrounding tuple:

All countries where german is spoken:

SELECT Country -- NOT ALLOWED !!!!

FROM NLanguage A,

THE ( SELECT Languages

FROM NLanguage B

WHERE B.Country=A.Country)

WHERE Name=’German’);

Nested Tables 90

Database Programming in SQL/ORACLE

Working with Nested Tables

TABLE ([<table>.]<attr>)

can be used in Subquery :

SELECT Country

FROM NLanguage

WHERE EXISTS

(SELECT *

FROM TABLE (Languages) -- to the current tuple

WHERE Name=’German’);

Country

A

B

CH

D

NAM

But: Attributes of the inner table cannot be selected in the outer
SELECT statement.

⇒ not possible to return the percentage of the languages in the
corresponding countries.

Nested Tables 91



Database Programming in SQL/ORACLE

Working with Nested Tables

CURSOR-Operator:

Example:

SELECT Country,

CURSOR (SELECT *

FROM TABLE (Languages))

FROM NLanguage;

Country CURSOR(SELECT...)

CH CURSOR STATEMENT : 2

NAME PERCENTAGE

French 18

German 65

Italian 12

Romansch 1

⇒ Cursors etc. in PL/SQL.

Nested Tables 92

Database Programming in SQL/ORACLE

Working with Nested Tables

SELECT Country, Name -- NOT ALLOWED !!

FROM NLanguage A,

THE ( SELECT Languages

FROM NLanguage B

WHERE B.Country=A.Country);

SELECT Country, Name

FROM NLanguage A,

THE ( SELECT Languages

FROM NLanguage B

WHERE B.Country=A.Country)

WHERE A.Country = ’CH’; -- now allowed.

Using a table All_Languages that contains all languages:

SELECT Country, Name

FROM NLanguage, All_Languages

WHERE Name IN

(SELECT Name

FROM TABLE (Languages));

Conclusion: the domain of nested tables must be accessible in
a single table.

Nested Tables 93



D
at

ab
as

e
P

ro
gr

am
m

in
g

in
S

Q
L/

O
R

A
C

LE

C
om

pl
ex

D
at

a
Ty

pe
s

S
E
L
E
C
T

*
F
R
O
M

U
S
E
R
_
T
Y
P
E
S

Ty
pe

_n
am

e
Ty

pe
_o

id
Ty

pe
co

de
A

ttr
ib

ut
es

M
et

ho
ds

P
re

In
c

G
eo

C
oo

rd
_

O
bj

ec
t

2
0

N
O

N
O

La
ng

ua
ge

_T
_

O
bj

ec
t

2
0

N
O

N
O

La
ng

ua
ge

s_
Li

st
_

C
ol

le
ct

io
n

0
0

N
O

N
O

D
el

et
e:

D
R
O
P

T
Y
P
E

[
F
O
R
C
E
]

W
ith

F
O
R
C
E
,a

da
ta

ty
pe

ca
n

be
de

le
te

d
w

ho
se

de
fin

iti
on

is
st

ill
ne

ed
ed

by
ot

he
r

ty
pe

s.

S
am

e
sc

en
ar

io
:

D
R
O
P

T
Y
P
E

L
a
n
g
u
a
g
e
_
T

“T
yp

m
it

ab
h"

an
gi

ge
n

Ty
pe

n
od

er
ta

bl
es

ka
nn

ni
ch

tg
el

"o
sc

ht
od

er
er

se
tz

tw
er

de
n”

D
R
O
P

T
Y
P
E

L
a
n
g
u
a
g
e
_
T

F
O
R
C
E

de
le

te
s

L
a
n
g
u
a
g
e
_
T
,b

ut

S
Q
L
>

d
e
s
c

L
a
n
g
u
a
g
e
s
_
L
i
s
t
;

F
E
H
L
E
R
:

O
R
A
-
2
4
3
7
2
:

U
n
g
"
u
l
t
i
g
e
s

O
b
j
e
k
t

f
"
u
r

B
e
s
c
h
r
e
i
b
u
n
g

N
es

te
d

Ta
bl

es
94

Database Programming in SQL/ORACLE

Transactions in ORACLE

Begin of a Transaction

SET TRANSACTION READ [ONLY | WRITE];

Safepoints

For a long transaction, savepoints can be set:

SAVEPOINT <savepoint>;

End of a Transaction

• COMMIT statement: all changes become persistent,

• ROLLBACK [TO <savepoint>] undoes all changes [since
<savepoint>],

• DDL statement (e.g. CREATE, DROP, RENAME, ALTER),

• User exits from ORACLE,

• process is killed.

Transactions 95



Database Programming in SQL/ORACLE

Referential Integrity – A First Look

• if a table that contains columns that are defined as foreign
keys by REFERENCES <table>(<column-list>) is
generated, <table> must be already defined, and
<column-list> must already be declared as PRIMARY KEY.

• When tuples are inserted, the corresponding referenced
tuples must already be present.

• When tuples are deleted, the referential integrity must be
preserved.

• tables and views are deleted with DROP TABLE or DROP
VIEW.

• it is not possible to delete a table that still contains
referenced tuples.

• tables which are targets of a REFERENCES declaration can
be deleted by DROP TABLE <table> CASCADE

CONSTRAINTS.

• nested tables do not support referential integrity.

Referential Integrity 96

Database Programming in SQL/ORACLE

PART II: This and That

Part I: Basics

• ER model and relational data model

• generation of a (relational) schema: CREATE TABLE

• queries: SELECT – FROM – WHERE

• working on the database: DELETE, UPDATE

Part II: further topics on basic SQL

• modifications of the database schema

• referential integrity

• view updates

• access control

• optimization

Part III: prodecural concepts, OO, embedding

• PL/SQL: procedures, functions, triggers

• object-orientation

• Embedded SQL, JDBC

Modifying the Database Schema 97



Database Programming in SQL/ORACLE

Modification of Schema Objects

• CREATE statement

• ALTER statement

• DROP statement

• TABLE

• VIEW

• TYPE

• INDEX

• ROLE

• PROCEDURE

• TRIGGER

...

Modifying the Database Schema 98

Database Programming in SQL/ORACLE

Modification of Table Schemata

• ALTER TABLE

• add columns and conditions,

• change conditions,

• delete, deactivate, and reactivate conditions.

ALTER TABLE <table>

ADD (<add-clause>)

MODIFY (<modify-clause>)

DROP <drop-clause>

...

DROP <drop-clause>

DISABLE <disable-clause>

...

DISABLE <disable-clause>

ENABLE <enable-clause>

...

ENABLE <enable-clause>;

Modification of Table Schemata 99



Database Programming in SQL/ORACLE

Adding Columns to Tables

ALTER TABLE <table>

ADD (<col> <datatype> [DEFAULT <value>]

[<colConstraint> ... <colConstraint>],
...

<col> <datatype> [DEFAULT <value>]

[<colConstraint> ... <colConstraint>],

<add table constraints>...)

MODIFY (<modify-clause>)

DROP <drop-clause>

... ;

New columns are filled with NULL values.

Beispiel: The relation economy is extended with a column
unemployment :

ALTER TABLE Economy

ADD (Unemployment NUMBER CHECK (Unemployment > 0));

Modification of Table Schemata 100

Database Programming in SQL/ORACLE

Adding Table Conditions

ALTER TABLE <table>

ADD (<... add some columns ... >,

<tableConstraint>,
...

<tableConstraint>)

MODIFY (<modify-clause>)

DROP <drop-clause>

... ;

Add an assertion that the sum of the percentages of industry,
service and agriculture of the GDP is at most 100%:

ALTER TABLE Economy

ADD (Unemployment NUMBER CHECK (Unemployment > 0),

CHECK (Industry + Service + Agriculture <= 100));

• if a condition is added that does not hold in the current
database state, an error message is returned.

ALTER TABLE City

ADD (CONSTRAINT citypop CHECK (Population > 100000));

Modification of Table Schemata 101



Database Programming in SQL/ORACLE

Modify Column Definitions of a Table

• column conditions can be added by ALTER TABLE ...

ADD.

ALTER TABLE <table>

ADD (<add-clause>)

MODIFY (<col> [<datatype>] [DEFAULT <value>]

[<colConstraint> ... <colConstraint>],
...

<col> [<datatype>] [DEFAULT <value>]

[<colConstraint> ... <colConstraint>])

DROP <drop-clause>

... ;

• for <colConstraint>, only NULL and NOT NULL are allowed
here.

All other conditions must be added by ALTER TABLE ...

ADD (<tableConstraint>).

ALTER TABLE Country MODIFY (Capital NOT NULL);

ALTER TABLE encompasses

ADD (PRIMARY KEY (Country,Continent));

ALTER TABLE Desert

ADD (CONSTRAINT DesertArea CHECK (Area > 10));

• Error message, if a condition is added that is not satisfied
in the current database state.

Modification of Table Schemata 102

Database Programming in SQL/ORACLE

ALTER TABLE ... DROP/DISABLE/ENABLE

• (Integrity)constraints on a table

- delete,

- deactivate for some time,

- reactivate.

ALTER TABLE <table>

ADD (<add-clause>)

MODIFY (<modify-clause>)

DROP PRIMARY KEY [CASCADE] |

UNIQUE (<column-list>) |

CONSTRAINT <constraint>

DISABLE PRIMARY KEY [CASCADE] |

UNIQUE (<column-list>) |

CONSTRAINT <constraint> | ALL TRIGGERS

ENABLE PRIMARY KEY |

UNIQUE (<column-list>) |

CONSTRAINT <constraint> | ALL TRIGGERS;

• PRIMARY KEY must not be deleted/disabled as long as there
is a REFERENCES declaration to it.

• DROP PRIMARY KEY CASCADE deletes/disables
corresponding REFERENCES declarations.

• ENABLE: if some constraints have been disabled
cascadingly, they must be reactivated manually.

Modification of Table Schemata 103



Database Programming in SQL/ORACLE

Referential Integrity

Referential integrity occur when in the transformation from the
ER model to the relational model, key attributes of entities are
incorporated into the relationship tables (correspondence
between primary and foreign keys):

continent Countryencompasses

name

Europe

code

R

percent

20CREATE TABLE Country

(Name VARCHAR2(32),

Code VARCHAR2(4) PRIMARY KEY,

...);

CREATE TABLE Continent

(Name VARCHAR2(10) PRIMARY KEY,

Area NUMBER(2));

CREATE TABLE encompasses

(Continent VARCHAR2(10) REFERENCES Continent(Name),

Country VARCHAR2(4) REFERENCES Country(Code),

Percentage NUMBER);

Referential Integrity 104

Database Programming in SQL/ORACLE

Referential Integrity

Country

Name Code Capital Province

Germany D Berlin Berlin

United States USA Washington Distr. Columbia

. . . . . . . . . . . .

City

Name Country Province

Berlin D Berlin

Washington USA Distr. Columbia

. . . . . . . . .

FOREIGN KEY (<attr-list>)

REFERENCES <table’> (<attr-list’>)

• (<attr-list’>) must be a candidate key of the referenced
table.

• in ORACLE: must be declared as primary key.

Referential Integrity 105



Database Programming in SQL/ORACLE

Referential Integrity

• as column condition:

<attr> [CONSTRAINT <name>]

REFERENCES <table’>(<attr’>)

CREATE TABLE City

(...

Country VARCHAR2(4)

CONSTRAINT CityRefsCountry

REFERENCES Country(Code) );

• as table condition:

[CONSTRAINT <name>]

FOREIGN KEY (<attr-list>)

REFERENCES <table’>(<attr-list’>)

CREATE TABLE Country

(...

CONSTRAINT CapitalRefsCity

FOREIGN KEY (Capital,Code,Province)

REFERENCES City(Name,Country,Province) );

Referential Integrity 106

Database Programming in SQL/ORACLE

Referential Actions

• if the contents of a table changes, actions are carried out
for preserving referential integrity,

• if this is not possible, the changes are not executed, or
even undone.

1. INSERT into a referenced table or DELETE from a referencing
table does not cause any problems:

INSERT INTO Country

VALUES (’Lummerland,’LU’,...);

DELETE FROM is_member (’D’,’EU’);

2. INSERT or UPDATE in a referencing table must not generate
foreign key values that do not exist in the referenced table:

INSERT INTO City

VALUES (’Karl-Marx-Stadt’,’DDR’,...);

If the target key exists, there is no problem:
UPDATE City SET Country=’A’ WHERE Name=’Munich’;

3. DELETE und UPDATE of the referenced table: it is useful to
adapt the referencing table by referential actions
automatically:
UPDATE Country SET Code=’UK’ WHERE Code=’GB’; or
DELETE FROM Country WHERE Code=’I’;

Referential Integrity 107



Database Programming in SQL/ORACLE

Referential Actions in the SQL-2 Standard

NO ACTION:

The operation is executed; after execution, it is checked,
whether “dangling references” occurred. If so, the
operation is undone:
DELETE FROM River;

distinguish between the reference River - River and located
- River !

RESTRICT:

The operation is executed only if no “dangling references”
can occur:
DELETE FROM Organization WHERE ...;

error message if an organization would be deleted that still
has some members.

CASCADE:

The operation is executed. Referencing tuples are also
deleted or modified.
UPDATE Country SET Code=’UK’ WHERE Code=’GB’;

modifies also other tables:

Country: (United Kingdom,GB,. . . ) ;

(United Kingdom,UK,. . . )
Province:(Yorkshire,GB,. . . ) ; (Yorkshire,UK,. . . )
City: (London,GB,Greater London,. . . ) ;

(London,UK,Greater London,. . . )

Referential Integrity 108

Database Programming in SQL/ORACLE

Referential Actions in the SQL-2 Standard

SET DEFAULT:

the operation is executed and for all referenced tuples, the
foreign key value is set to the specified DEFAULT values (for
which a corresponding tuple in the referenced relation must
exist).

SET NULL:

the operation is executed and for all referenced tuples, the
foreign key value is set to the NULL value (for this, NULL
values must be allowed).

located: city is located as a river/sea/lake
located(Bremerhaven,Nds.,D,Weser,NULL,North Sea)

DELETE * FROM River WHERE Name=’Weser’;

located(Bremerhaven,Nds.,D,NULL,NULL,North Sea)

Referential Integrity 109



Database Programming in SQL/ORACLE

Referential Actions in the SQL-2-Standard

Referential integrity constraints and referential actions are
specified with the CREATE TABLE or ALTER TABLE command as

<columnConstraint> (for individual columns)

<col> <datatype>

CONSTRAINT <name>

REFERENCES <table’> (<attr’>)

[ ON DELETE {NO ACTION | RESTRICT | CASCADE |

SET DEFAULT | SET NULL } ]

[ ON UPDATE {NO ACTION | RESTRICT | CASCADE |

SET DEFAULT | SET NULL } ]

or <tableConstraint> (for multiple columns)

CONSTRAINT <name>

FOREIGN KEY (<attr-list>)

REFERENCES <table’> (<attr-list’>)

[ ON DELETE ...]

[ ON UPDATE ...]

Referential Integrity 110

Database Programming in SQL/ORACLE

Referential Actions

Country

Name Code Capital Province

Germany D Berlin Berlin

United States USA Washington Distr. Columbia

. . . . . . . . . . . .

City

Name Country Province

Berlin D Berlin

Washington USA Distr. Columbia

. . . . . . . . .

CASCADE

NO ACTION

1. DELETE FROM City WHERE Name=’Berlin’;

2. DELETE FROM Country WHERE Name=’Germany’;

Referential Integrity 111



Database Programming in SQL/ORACLE

Referential Actions in ORACLE

• ORACLE 9: only ON DELETE/UPDATE NO ACTION, ON
DELETE CASCADE, and ON DELETE SET NULL are
implemented.

• of no ON ... is specified, NO ACTION is used by default.

• ON UPDATE CASCADE is missing, which is cumbersome
when applying updates.

• This has its reasons . . .

Syntax as <columnConstraint>:

CONSTRAINT <name>

REFERENCES <table’> (<attr’>)

[ON DELETE CASCADE|ON DELETE SET NULL]

Syntax as <tableConstraint>:

CONSTRAINT <name>

FOREIGN KEY [ (<attr-list>)]

REFERENCES <table’> (<attr-list’>)

[ON DELETE CASCADE|ON DELETE SET NULL]

Referential Integrity 112

Database Programming in SQL/ORACLE

Referential Actions: UPDATE without CASCADE

Beispiel: Renaming of a country:

CREATE TABLE Country

( Name VARCHAR2(32) NOT NULL UNIQUE,

Code VARCHAR2(4) PRIMARY KEY);

(’United Kingdom’,’GB’)

CREATE TABLE Province

( Name VARCHAR2(32)

Country VARCHAR2(4) CONSTRAINT ProvRefsCountry

REFERENCES Country(Code));

(’Yorkshire’,’GB’)

Now, the country code should be changed from ’GB’ to ’UK’.

• UPDATE Country SET Code=’UK’ WHERE Code=’GB’;

; “dangling reference” of the old tuple (’Yorkshire’,’GB’).

• UPDATE Province SET Code=’UK’ WHERE Code=’GB’;

; “dangling reference” of the new tuple (’Yorkshire’,’UK’).

Referential Integrity 113



Database Programming in SQL/ORACLE

Referential Actions: UPDATE without CASCADE

• disable referential integrity constraint,

• apply updates,

• reactivate referential integrity constraint:

ALTER TABLE Province

DISABLE CONSTRAINT ProvRefsCountry;

UPDATE Country

SET Code=’UK’ WHERE Code=’GB’;

UPDATE Province

SET Country=’UK’ WHERE Country=’GB’;

ALTER TABLE Province

ENABLE CONSTRAINT ProvRefsCountry;

Referential Integrity 114

Database Programming in SQL/ORACLE

Referential Integrity Constraints

It is also possible to define a constraint with the table definition,
and immediately disable it:

CREATE TABLE <table>

( <col> <datatype> [DEFAULT <value>]

[<colConstraint> ... <colConstraint>],
...

<col> <datatype> [DEFAULT <value>]

[<colConstraint> ... <colConstraint>],

[<tableConstraint>],
...

[<tableConstraint>])

DISABLE ...
...

DISABLE ...

ENABLE ...
...

ENABLE ...;

Referential Integrity 115



Database Programming in SQL/ORACLE

Referential Actions: Cyclic References

Country

Name Code Capital Province

Germany D Berlin Berlin

United States US Washington Distr.Col.

. . . . . . . . . . . .

Province

Name Country Capital

Berlin D Berlin

Distr.Col. US Washington

. . . . . . . . .

City

Name Country Province

Berlin D B

Washington USA Distr.Col.

. . . . . . . . .

Referential Integrity 116

Database Programming in SQL/ORACLE

Referential Actions: Problems with ON UPDATE

Country

Name Code Capital Province

Germany D Berlin Berlin

United States US Washington Distr.Col.

. . . . . . . . . . . .

Province

Name Country Capital

Berlin D Berlin

Distr.Col. US Washington

. . . . . . . . .

City

Name Country Province

Berlin D B

Washington USA Distr.Col.

. . . . . . . . .

DELETE FROM Country

WHERE Code=’D’

SET NULL

CASCADE

CASCADE

Referential Integrity 117



Database Programming in SQL/ORACLE

Referential Actions

General case:

• already a single update may be ambiguous or even
inconsistent when ON DELETE/UPDATE SET NULL/SET

DEFAULT and ON UPDATE CASCADE are allowed.

• Due to SQL triggers an update often induces several other
updates,

• non-trivial decision which updates should be triggered,

• in case of inconsistencies, their origin must be analyzed,
and maximal admissible subsets must be investigated,

• stable models, exponential complexity.

Investigations on this topic in the dbis group:

• B. Ludäscher, W. May, and G. Lausen: Referential Actions
as Logical Rules. In Proc. 16th ACM Symposium on
Principles of Database Systems, Tucson, Arizona, 1997.

• B. Ludäscher, W. May: Referential Actions: From Logical
Semantics to Implementation. In Proc. 6th Intl. Conf. on
Extending Database Technologies, Valencia, Spain, 1998.

• W. May, B. Ludäscher: Understanding the Global
Semantics of Referential Actions using Logical Rules. In
ACM Transactions on Database Systems, 27(4), 2002.

Referential Integrity 118

Database Programming in SQL/ORACLE

Views

• Combination with access permissions (later)

• presentation of the actual database in a different form for
some users.

View Updates

• must be mapped onto updates of the base relation(s),

• not always possible.

• Table USER_UPDATABLE_COLUMNS in the Data Dictionary:

CREATE VIEW <name> AS ...

SELECT * FROM USER_UPDATABLE_COLUMNS

WHERE Table_Name = ’<NAME>’;

View Updates 119



Database Programming in SQL/ORACLE

View Updates

• derived values cannot be changed:

Example:

CREATE OR REPLACE VIEW temp AS

SELECT Name, Code, Area, Population,

Population/Area AS Density

FROM Country;

SELECT * FROM USER_UPDATABLE_COLUMNS

WHERE Table_Name = ’TEMP’;

Table_Name Column_Name UPD INS DEL

temp Name yes yes yes

temp Code yes yes yes

temp Area yes yes yes

temp Population yes yes yes

temp Density no no no

INSERT INTO temp (Name, Code, Area, Population)

VALUES (’Lummerland’,’LU’,1,4)

SELECT * FROM temp where Code = ’LU’;

• analogously for values that are computed by aggregate
functions (COUNT, AVG, MAX, . . . )

View Updates 120

Database Programming in SQL/ORACLE

View Updates

Example:

CREATE VIEW CityCountry (City, Country) AS

SELECT City.Name, Country.Name

FROM City, Country

WHERE City.Country = Country.Code;

SELECT * FROM USER_UPDATABLE_COLUMNS

WHERE Table_Name = ’CITYCOUNTRY’;

Table_Name Column_Name UPD INS DEL

CityCountry City yes yes yes

CityCountry Country no no no

• city names can be changed:
direct mapping to City :

UPDATE CityCountry

SET City = ’Wien’

WHERE City = ’Vienna’;

SELECT * FROM City WHERE Country = ’A’;

Name Country Province . . .

Wien A Vienna . . .
...

...
...

...

View Updates 121



Database Programming in SQL/ORACLE

View Updates

Example:

• Country cannot be changed:

City Country

Berlin Germany

Freiburg Germany

Mapping to base table would be ambiguous:

UPDATE CityCountry UPDATE CityCountry

SET Country = ’Poland’ SET Country = ’Deutschland’

WHERE City = ’Berlin’; WHERE Country = ’Germany’;

DELETE FROM CityCountry DELETE FROM CityCountry

WHERE City = ’Berlin’; WHERE Country = ’Germany’;

View Updates 122

Database Programming in SQL/ORACLE

View Updates

• ORACLE: admissibility decided by heuristics,

• based only on schema information,

• not on the current database state!

• key properties are important.

• Key of a base table = key of the view:
obvious mapping possible and unambiguous.

• key of a base table covers a key of the view: unambiguous
translation, several tuples of the base table can be effected.

• key of a base table does not cover any key of the view: in
general, no translation possible (see exercises).

View Updates 123



Database Programming in SQL/ORACLE

View Updates

Example:

CREATE OR REPLACE VIEW temp AS

SELECT country, population

FROM Province A

WHERE population = (SELECT MAX(population)

FROM Province B

WHERE A.Country = B.Country);

SELECT * FROM temp WHERE Country = ’D’;

Country Name Population

D Nordrhein-Westfalen 17816079

UPDATE temp

SET population = 0 where Country = ’D’;

SELECT * FROM Province WHERE Name = ’D’;

Result: the population of the province with the highest
population in Germany is set to 0. Thus, the view changes!

SELECT * FROM temp WHERE Country = ’D’;

Country Name Population

D Bayern 11921944

View Updates 124

Database Programming in SQL/ORACLE

View Updates

• Tuples can drop out of the view definition,

• this can be prevented by the WITH CHECK OPTION:

Beispiel

CREATE OR REPLACE VIEW UScities AS

SELECT *

FROM City

WHERE Country = ’USA’

WITH CHECK OPTION;

UPDATE UScities

SET Country = ’D’ WHERE Name = ’Miami’;

FEHLER in Zeile 1:

ORA-01402: Verletzung der WHERE clause

einer View WITH CHECK OPTION

• it is allowed to delete tuples from the view/base relation.

View Updates 125



Database Programming in SQL/ORACLE

Materialized Views

• Views are computed from scratch for every query.

+ always represent the current database state.

- time-consuming, inefficient if the data changes only
seldom.

⇒ Materialized Views

• are computed at definition time, and

• are updated whenever base relations change (e.g., by
triggers).

• ⇒ problems of view maintenance.

View Updates 126

Database Programming in SQL/ORACLE

User Authentification

• user name

• password

• sqlplus /: authorization via UNIX account

Access Permissions inside ORACLE

• access permissions associated to the ORACLE account

• initially defined by the DBA

Schema Concept

• each user is assigned an own database schema where his
objects are located.

• global addressing of tables by <username>.<table>

(e.g. dbis.City),

• in the own schema by <table>.

Access Permissions 127



Database Programming in SQL/ORACLE

System Privileges

• entitle for schema operations

• CREATE [ANY]

TABLE/VIEW/TYPE/INDEX/CLUSTER/TRIGGER/PROCEDURE:
user is allowed to generate schema objects of these types,

• ALTER [ANY] TABLE/TYPE/TRIGGER/PROCEDURE:
user is allowed to change schema objects of these types,

• DROP [ANY]

TABLE/VIEW/TYPE/INDEX/CLUSTER/TRIGGER/PROCEDURE:
user is allowed to delete schema objects of these types,

• SELECT/INSERT/UPDATE/DELETE [ANY] TABLE:
user is allowed to read/create/change/delete tuples from
tables.

• ANY: operation is allowed in all schemas,

• without ANY: operation is allowed only in the own schema.

In this course:

• CREATE SESSION, ALTER SESSION, CREATE TABLE,

CREATE VIEW, CREATE SYNONYM, CREATE CLUSTER.

• permissions for accessing and changing the own tables are
not mentioned explicitly (SELECT TABLE).

Access Permissions 128

Database Programming in SQL/ORACLE

System Privileges

GRANT <privilege-list>

TO <user-list> | PUBLIC [ WITH ADMIN OPTION ];

• PUBLIC: every user gets a permission

• ADMIN OPTION: the grantee is allowed to grant this
permission to other users.

Revoke permissions:

REVOKE <privilege-list> | ALL

FROM <user-list> | PUBLIC;

only if the user has granted this permission (cascading in the
case of ADMIN OPTION).

Examples:

• GRANT CREATE ANY INDEX, DROP ANY INDEX

TO opti-person WITH ADMIN OPTION;

allows opti-person to create and delete indexes
everywhere,

• GRANT DROP ANY TABLE TO destroyer;

GRANT SELECT ANY TABLE TO supervisor;

• REVOKE CREATE TABLE FROM clueless;

Informations about access permissions in the data dictionary:

SELECT * FROM SESSION_PRIVS;

Access Permissions 129



Database Programming in SQL/ORACLE

Object Privileges

allow for executing operations to existing schema objects.

• owner of a database object

• nobody else is allowed to use this object, except

• owner (or DBA) explicitly grants him some permissions:

GRANT <privilege-list> | ALL [(<column-list>)]

ON <object>

TO <user-list> | PUBLIC

[ WITH GRANT OPTION ];

• <object>: TABLE, VIEW, PROCEDURE/FUNCTION, TYPE,

• tables and views: detailed specification for INSERT,
REFERENCES, and UPDATE by <column-list>,

• <privilege-list>: DELETE, INSERT, SELECT, UPDATE
for tables and views,
INDEX, ALTER, and REFERENCES for tables,
EXECUTE for procedures, functions, and TYPEs.

• ALL: all privileges that one has for the corresponding object.

• GRANT OPTION: the grantee can grant the permission to
other users.

Access Permissions 130

Database Programming in SQL/ORACLE

Object Privileges

Revoke permissions:

REVOKE <privilege-list> | ALL

ON <object>

FROM <user-list> | PUBLIC

[CASCADE CONSTRAINTS];

• CASCADE CONSTRAINTS (bei REFERENCES): all referential
integrity constraints, that are based on the revoked
REFERENCES privilege are dropped.

• in case that a permission is obtained from several users, it
is dropped with the last REVOKE.

• in case of GRANT OPTION, the revocation also cascades.

Granted and obtained permissions are stored in the Data
Dictionary:

SELECT * FROM USER_TAB_PRIVS;

• permissions that one has granted for the own tables,

• permissions that one has obtained for other’s tables

SELECT * FROM USER_COL_PRIVS;

SELECT * FROM USER_TAB/COL_PRIVS_MADE/RECD;

User roles are defined as prototypical patterns for maintaining
permissions (e.g., student, dba, ...).

Access Permissions 131



Database Programming in SQL/ORACLE

Synonyms

Schema objects can be accessed under another name as
originally stored:

CREATE [PUBLIC] SYNONYM <synonym>

FOR <schema>.<object>;

• Without PUBLIC: Synonym is defined only for its owner.

• PUBLIC creates system-wide synonyms. Only allowed if
one has the CREATE ANY SYNONYM privilege.

Example: A user often needs the relation “City” from the “dbis”
schema.

• SELECT * FROM dbis.City;

• CREATE SYNONYM City

FOR dbis.City;

SELECT * FROM City;

Delete synonyms: DROP SYNONYM <synonym>;

Access Permissions 132

Database Programming in SQL/ORACLE

Access Restriction via Views

• GRANT SELECT cannot be restricted to columns.

• instead: use a view.

GRANT SELECT [<column-list>] – nicht erlaubt

ON <table>

TO <user-list> | PUBLIC

[ WITH GRANT OPTION ];

can be replaced by

CREATE VIEW <view> AS

SELECT <column-list>

FROM <table>;

GRANT SELECT

ON <view>

TO <user-list> | PUBLIC

[ WITH GRANT OPTION ];

Access Permissions 133



Database Programming in SQL/ORACLE

Access Restrictions via Views: Example

pol is owner of the relation Country, he wants to allow the user
geo to read and write Country without the Capital column (and
the column that gives the province where the capital is located)

View with appropriate access permissions for geo:

CREATE VIEW pubCountry AS

SELECT Name, Code, Population, Area

FROM Country;

GRANT SELECT, INSERT, DELETE, UPDATE

ON pubCountry TO geo;

• References to views are not allowed.

<pol>: GRANT REFERENCES (Code) ON Country TO geo;

<geo>: ... REFERENCES pol.Country(Code);

Access Permissions 134

Database Programming in SQL/ORACLE

Optimization of the Database

• minimize number of secondary storage accesses

• keep as much data as possible in main memory

Storage:

• efficient access (search) to secondary memory
−→ access paths: indexes, hashing

• try to access data that semantically belongs together with a
single access to secondary memory
−→ Clustering

Query optimization:

• keep amount of data small

• select early

• internal optimization strategies

Algorithmic optimization !

Optimization 135



Database Programming in SQL/ORACLE

Access Paths: Indexes

Access by using indexes over columns is much more efficient.

• Trees; ORACLE: B∗-tree,

• B∗-tree: nodes contain only the information for searching
for a value,

• high degree, height of the tree is small.

4 8 12

1 2 3 4 5 6 7 8 9 10 11 12

• searching by comparing keys: logarithmic effort.

• fast access (logarithmic) versus higher effort for
reorganization (→ algorithm theory),

• multiple indexes on a table possible (over different attribute
sets),

• having many indexes on a table table may lead to poor
performance for insertions, modifications, and deletions,

• logically and physically independent from the data of the
corresponding table,

• no effect on the formulation of SQL statements,
Optimization 136

Database Programming in SQL/ORACLE

Access Paths: Indexes

Access over indexed columns much more efficient:

• fetch index nodes from secondary memory,

• access the node that contains the tuple

CREATE TABLE zip

(City VARCHAR2(35)

Country VARCHAR2(4)

Province VARCHAR2(32)

zip NUMBER)

CREATE INDEX zipIndex ON zip (Country,zip);

SELECT *

FROM zip

WHERE zip = 79110 AND Country = ‘D’;

Optimization 137



Database Programming in SQL/ORACLE

Hashing

Depending on the value(s) of one or more columns (hash key),
a hash function is computed which indicates where the
corresponding tuples are stored.

• access in constant time,

• no order of elements.

Example:

• access to the information about a specific country
Hash key: Country.Code

Hash key value

Hash function

F D NL

· · · 58317450 · · · 83536115 · · · 15568034 · · ·

547030 356910 37330

In ORACLE, hashing is implemented only for Clusters.

Optimization 138

Database Programming in SQL/ORACLE

Clusters

• collection of a group of tables which share one or more
columns (cluster key), or

• special case: grouping of a table depending on one or
more attributes.

• with a single secondary memory access, data that
semantically belongs together is fetched into main memory.

Advantages of clustering:

• miminize the number of secondary memory access,

• saves memory space since cluster key is stored only once.

Disadvantages:

• inefficient if cluster keys are updated frequently since this
requires a physical reorganization,

• loss of performance when inserting into clustered tables.

Optimization 139



Database Programming in SQL/ORACLE

Clustering

Sea and geo_Sea with cluster key Sea.Name:

Cl_Sea

Mediterranean Sea Depth

5121

Province Country

Catalonia E

Valencia E

Murcia E

Andalusia E

Languedoc-R. F

Provence F
...

...

Baltic Sea Depth

459

Province Country

Schleswig-H. D

Mecklenb.-Vorp. D

Szczecin PL
...

...

Optimization 140

Database Programming in SQL/ORACLE

Clustering

City by (Province,Country):

Country Province

D Nordrh.-Westf. City Population . . .

Düsseldorf 572638 . . .

Solingen 165973 . . .

USA Washington City Population . . .

Seattle 524704 . . .

Tacoma 179114 . . .

...
...

...
...

...

Optimization 141



Database Programming in SQL/ORACLE

Creating a Cluster in ORACLE

Create cluster and declare cluster key:

CREATE CLUSTER <name>(<col> <datatype>-list)

[INDEX | HASHKEYS <integer> [HASH IS <funktion>]];

CREATE CLUSTER Cl_Sea (SeaName VARCHAR2(25));

Default: indexed Cluster, i.e., rows are indexed according to the
cluster key.
Optional: HASH, with specifying a hash function for the cluster
key values.

→֒

Optimization 142

Database Programming in SQL/ORACLE

Creating a Cluster in ORACLE

Assigning tables to a cluster by CREATE TABLE, with
specification of the cluster key.

CREATE TABLE <table>

(<col> <datatype>,
...

<col> <datatype>)

CLUSTER <cluster>(<column-list>);

CREATE TABLE CSea

(Name VARCHAR2(25) PRIMARY KEY,

Depth NUMBER)

CLUSTER Cl_Sea (Name);

CREATE TABLE Cgeo_Sea

(Province VARCHAR2(32),

Country VARCHAR2(4),

Sea VARCHAR2(25))

CLUSTER Cl_Sea (Sea);

Creating the cluster key index:
(must be done before the first DML command).

CREATE INDEX <name> ON CLUSTER <cluster>;

CREATE INDEX ClSeaInd ON CLUSTER Cl_Sea;

Optimization 143



Database Programming in SQL/ORACLE

Procedural Extensions: PL/SQL

• no procedural concepts in SQL (loops, if, variables)

• many tasks can only be performed awkwardly by using
intermediate tables, or even impossible:

– transitive closure

• programs represent application-specific procedural
knowledge that is not contained in the database.

Extensions

• embedding of SQL into procedural host languages
(embedded SQL); e.g., C, C++, or recently Java (JDBC),

• extending SQL with procedural elements inside the SQL
environment, PL/SQL (Procedural language extensions to
SQL).

• advantages of PL/SQL: better integration of procedural
features into the database: procedures, functions, and
triggers.

• required for object methods.

PL/SQL 144

Database Programming in SQL/ORACLE

Block Structure of PL/SQL

Block Header

IS

Declaration Section

BEGIN

Execution Section

EXCEPTION

Exception Section

END;

• block header: type of the object (function, procedure, or
anonymous (inside another block)), and parameter
declarations,

• declaration section: declarations of variables,

• execution section: command sequence of the block,

• exception section: reactions on errors.

PL/SQL 145



Database Programming in SQL/ORACLE

Procedures

CREATE [OR REPLACE] PROCEDURE <proc_name>

[(<parameter-list>)]

IS <pl/sql-body>;

/

• OR REPLACE: if procedure definition already exists, it is
overwritten.

• (<parameter-list>): declaration of formal parameters:

(<variable> [IN|OUT|IN OUT] <datatype>,
...

<variable> [IN|OUT|IN OUT] <datatype>)

• IN, OUT, IN OUT: specify how the procedure/function uses
the parameter (read, write, both).

• default: IN.

• in case of OUT and IN OUT, the argument must always be
an variable, in case of IN, also constants are allowed.

• <datatype>: all data types that are supported in PL/SQL;
without length specification (VARCHAR2 instead of
VARCHAR2(20)).

• <pl/sql-body> contains the definition of the procedure in
PL/SQL.

PL/SQL 146

Database Programming in SQL/ORACLE

Functions

Analogously, additionally the result type is specified:

CREATE [OR REPLACE] FUNCTION <funct_name>

[(<parameter-list>)]

RETURN <datatype>

IS <pl/sql body>;

/

• PL/SQL functions are left by

RETURN <expression>;

Each function must contain at least one RETURN statement
in its <body>.

• Functions must not have side effects.

Important: after the semicolon, a slash (“/”), must follow for
executing the declaration!!!

In case of “... created with compilation errors”:

SHOW ERRORS;

gives a more detailed error description.

Procedures and functions are deleted by
DROP PROCEDURE/FUNCTION <name>.

PL/SQL 147



Database Programming in SQL/ORACLE

Procedures and Functions

• Invocation of procedures in a PL/SQL body:
<procedure> (arg1,...,argn);
(if a formal parameter is declared as OUT or INOUT, the
respective argument must be a variable)

• Invocation of procedures in SQLPlus:
execute <procedure> (arg1,...,argn);

• Usage of functions in PL/SQL:
... <function> (arg1,...,argn) ...

as in other programming languages.

The system-owned table DUAL is commonly used for displaying
thr return value of functions:

SELECT <function> (arg1,...,argn)

FROM DUAL;

PL/SQL 148

Database Programming in SQL/ORACLE

Example: Procedure

• Simple procedure: PL/SQL-Body contains only SQL
statements

Information about countries is distributed over several relations.

CREATE OR REPLACE PROCEDURE InsertCountry

(name VARCHAR2, code VARCHAR2, area NUMBER, pop NUMBER,

gdp NUMBER, inflation NUMBER, pop_growth NUMBER)

IS

BEGIN

INSERT INTO Country (Name,Code,Area,Population)

VALUES (name,code,area,pop);

INSERT INTO Economy (Country,GDP,Inflation)

VALUES (code,gdp,inflation);

INSERT INTO Population (Country,Population_Growth)

VALUES (code,pop_growth);

END;

/

EXECUTE InsertCountry

(’Lummerland’, ’LU’, 1, 4, 50, 0.5, 0.25);

PL/SQL 149



Database Programming in SQL/ORACLE

Example: Function

• Simple function: population density of a country

CREATE OR REPLACE FUNCTION Density (arg VARCHAR2)

RETURN number

IS

temp number;

BEGIN

SELECT Population/Area

INTO temp

FROM Country

WHERE code = arg;

RETURN temp;

END;

/

SELECT Density(’D’)

FROM dual;

PL/SQL 150

Database Programming in SQL/ORACLE

PL/SQL-Variables and Data Types.

Declaration of the PL/SQL Variables in the declaration section:

<variable> <datatype> [NOT NULL] [DEFAULT <value>];
...

<variable> <datatype> [NOT NULL] [DEFAULT <value>];

Simple data types:

BOOLEAN: TRUE, FALSE, NULL,

BINARY_INTEGER, PLS_INTEGER: Signed integers,

NATURAL, INT, SMALLINT, REAL, . . . : Numerical data types.

amount NUMBER DEFAULT 0;

name VARCHAR2(30);

PL/SQL 151



Database Programming in SQL/ORACLE

anchored Type Declaration

By giving a PL/SQL variable or a table column (!) whose type
should be used for a new variable:

<variable> <variable’>%TYPE

[NOT NULL] [DEFAULT <value>];

or

<variable> <table>.<col>%TYPE

[NOT NULL] [DEFAULT <value>];

• cityname City.Name%TYPE

use the type of the Name column of the City table as the
datatype of the newly defined variable.

• %TYPE is detected at compile time.

PL/SQL 152

Database Programming in SQL/ORACLE

Variable Assignment

• “classical way” in the program:

a := b;

• assigning a (single-column and single-row!) result of a
database query to a PL/SQL variable:

SELECT ...

INTO <PL/SQL-Variable>

FROM ...

Example:

the_name country.name%TYPE
...

SELECT name

INTO the_name

FROM country

WHERE name=’Germany’;

PL/SQL 153



Database Programming in SQL/ORACLE

PL/SQL Data Types: Records

A RECORD consists of several fields, corresponding to a tuple of
the database:

TYPE city_type IS RECORD

(Name City.Name%TYPE,

Country VARCHAR2(4),

Province VARCHAR2(32),

Population NUMBER,

Longitude NUMBER,

Latitude NUMBER);

the_city city_type;

anchored Type Declaration for Records

Records can be declared using a table definition: %ROWTYPE:

<variable> <table-name>%ROWTYPE;

equivalent to the above example:

the_city city%ROWTYPE;

PL/SQL 154

Database Programming in SQL/ORACLE

Assignment to Records

• Aggregate assignment: two variables of the same record
type:

<variable> := <variable’>;

• assignment of a single field:

<record.field> := <variable>|<value>;

• SELECT INTO: result of a query that yields a single tuple:

SELECT ...

INTO <record-variable>

FROM ... ;

the_country country%ROWTYPE
...

SELECT *

INTO the_country

FROM country

WHERE name=’Germany’;

Comparison of Records:
For comparing records, each field must be compared.

PL/SQL 155



Database Programming in SQL/ORACLE

PL/SQL Data Types: PL/SQL Tables

Array-like structure, a single column with an arbitrary datatype
(including RECORD types), usually indexed by BINARY_INTEGER.

TYPE <type> IS TABLE OF <datatype>

[INDEX BY BINARY_INTEGER];

<var> <type>;

zip_table_type IS TABLE OF City.Name%TYPE

INDEX BY BINARY_INTEGER;

zip_table zip_table_type;

• Addressing: <var>(1)

zip_table(79110):= Freiburg;

zip_table(33334):= Kassel;

• sparse: only those rows are stored that actually contain
values.

Tables can also be assigned as a whole:

other_table := zip_table;

PL/SQL 156

Database Programming in SQL/ORACLE

PL/SQL Data Types: PL/SQL Tables

PL/SQL tables provide built-in functions and procedures:

<variable> := <pl/sql-table-name>.<built-in-function>;

or

<pl/sql-table-name>.<built-in-procedure>;

• COUNT (fct): number of non-empty entries.
zip_table.count = 2

• EXISTS (fct): TRUE is table non-empty.

• DELETE (proc): deletes all entries of a table.

• FIRST/LAST (fct): lowest/highest used index.
zip_table.first = 33334

• NEXT/PRIOR(n) (fct): yields the next higher/lower used
index value, starting from n .
zip_table.next(33334) = 79110

PL/SQL 157



Database Programming in SQL/ORACLE

SQL-Statements in PL/SQL

• DML-commands INSERT, UPDATE, DELETE, and SELECT

INTO statements.

• these SQL statements may also contain PL/SQL variables.

• commands that effect only a single tuple can assign teir
results to PL/SQL variables by using RETURNING:

UPDATE ... SET ... WHERE ...

RETURNING <expr-list>

INTO <variable-list>;

E.g., return the row-ID of the affected tuple:

DECLARE rowid ROWID;

BEGIN
.
.
.

INSERT INTO Politics (Country,Independence)

VALUES (Code,SYSDATE)

RETURNING ROWID

INTO rowid;
.
.
.

END;

• DDL-Statements are not supported directly by PL/SQL:
DBMS_SQL-Package.

PL/SQL 158

Database Programming in SQL/ORACLE

Control Structures

• IF THEN - [ELSIF THEN] - [ELSE] - END IF,

• several kinds of loops:

• Simple LOOP: LOOP ... END LOOP;

• WHILE LOOP:
WHILE <condition> LOOP ... END LOOP;

• Numeric FOR LOOP:
FOR <loop_index> IN

[REVERSE] <from> .. <to>

LOOP ... END LOOP;

The variable <loop_index> is declared automatically as
INTEGER.

• EXIT [WHEN <condition>]: leave LOOP.

• the well-known GOTO statement with labels:
<<label_i>> ... GOTO label_j;

• NULL values always lead into the ELSE branch.

• GOTO: it is not allowed to jump into an IF, a LOOP, or a local
block; also not from one IF branch into another.

• after a label, an executable statement must follow;

• NULL Statement (is executable).

PL/SQL 159



Database Programming in SQL/ORACLE

Nested Blocks

Inside the execution section, anonymous blocks can be used
for structuring. Here, the Declaration Section is introduced by
DECLARE (there is no block header):

BEGIN

-- statements of the outer block --

DECLARE

-- declarations of the inner block

BEGIN

-- statements of the inner block

END;

-- statements of the outer block --

END;

PL/SQL 160

Database Programming in SQL/ORACLE

Cursor-Based Database Access

Row-wise access to a relation from a PL/SQL program.

Cursor declaration in the declaration section:

CURSOR <cursor-name> [(<parameter-list>)]

IS

<select-statement>;

• (<parameter-list>): parameter list.

• only IN allowed for parameter communication.

• between SELECT and FROM, PL/SQL variables and PL/SQL-
Functions are allowed. PL/SQL variables can also be used
in the WHERE, GROUP, and HAVING clauses.

Example

Compute all cities which are located in the country specified by
the variable the_country:

DECLARE CURSOR cities_in

(the_country Country.Code%TYPE)

IS SELECT Name

FROM City

WHERE Country=the_country;

PL/SQL 161



Database Programming in SQL/ORACLE

Cursors

• OPEN <cursor-name>[(<argument-list>)];

creates a virtual table for the result of the given SELECT

statement and defines a “window” that is placed over one
of the tuples and can be moved forwards stepwise. OPEN
executes the query and initializes the cursor:

OPEN cities_in (’D’);

OPEN
Name

Bonn

Kiel

Hamburg
...

FETCH

FETCHFETCH

FETCH

PL/SQL 162

Database Programming in SQL/ORACLE

Cursors

• FETCH <cursor-name> INTO <record-variable>; or
FETCH <cursor-name> INTO <variable-list>;

moves the cursor to the next row of the result of the query
and copies this row into the given record variable or
variable list.

The variable can e.g. be declared with the record type of
the cursor by using <cursor-name>%ROWTYPE:

<variable> <cursor-name>%ROWTYPE;

• CLOSE <cursor-name>; closes the cursor.

Example

DECLARE CURSOR cities_in

(the_country Country.Code%TYPE)

IS SELECT Name

FROM City

WHERE Country=the_country;

city_in cities_in%ROWTYPE;

BEGIN

OPEN cities_in (’D’);

FETCH cities_in INTO city_in;

CLOSE cities_in;

END;

PL/SQL 163



Database Programming in SQL/ORACLE

Cursors

not allowed:

OPEN cities_in (’D’);

OPEN cities_in (’CH’);

FETCH cities_in INTO <variable>;

• one parameterized cursor,

• not a family of cursors!

Cursors: Attributes

• <cursor-name>%ISOPEN: Cursor open?

• <cursor-name>%FOUND: as long as the preceding FETCH

operation has been successful (i.e., the cursor has been
moved to a valid tuple), <cursor-name>%FOUND = TRUE.

• <cursor-name>%NOTFOUND: TRUE if all rows of a cursor have
been FETCHed.

• <cursor-name>%ROWCOUNT: number of tuples that have
already been read from the cursor.

• not allowed inside SQL expressions.

PL/SQL 164

Database Programming in SQL/ORACLE

Cursor FOR LOOP

FOR <record_index> IN <cursor-name>

LOOP ... END LOOP;

• <record_index> is automatically declared as a variable of
the type <cursor-name>%ROWTYPE,

• <record_index> is always of a record type (including
one-column records).

• OPEN is executed automatically.

• for each execution of the loop body, FETCH is done
automatically,

• → loop body does not contain a FETCH statement,

• at the end, CLOSE is also executed automatically,

• columns must be addressed explicitly.

PL/SQL 165



Database Programming in SQL/ORACLE

Cursor FOR LOOP

Example: for every city in a given country, a procedure
“request_Info” should be invoked:

DECLARE CURSOR cities_in

(the_country country.Code%TYPE)

IS SELECT Name

FROM City

WHERE Country = the_country;

BEGIN

the_country:=’D’; % or something else

FOR the_city IN cities_in(the_country)

LOOP

request_Info(the_city.name);

END LOOP;

END;

PL/SQL 166

Database Programming in SQL/ORACLE

Cursor FOR LOOP

• SELECT statement can also be written directly into the FOR

clause.

CREATE TABLE big_cities

(name VARCHAR2(25));

BEGIN

FOR the_city IN

SELECT Name

FROM City

WHERE Country = the_country

AND Population > 1000000

LOOP

INSERT INTO big_cities

VALUES (the_city.Name);

END LOOP;

END;

PL/SQL 167



Database Programming in SQL/ORACLE

Writing on a Cursor

With WHERE CURRENT OF <cursor-name>, the most recently
FETCHed tuple of <cursor-name> can be accessed:

UPDATE <table-name>

SET <set_clause>

WHERE CURRENT OF <cursor_name>;

DELETE FROM <table-name>

WHERE CURRENT OF <cursor_name>;

Note that the placement of the cursor over a base table tuple
uniquely gives the position of the update (in contrast to View
Updates).

PL/SQL 168

Database Programming in SQL/ORACLE

Access Permissions

Invocation permission for functions/procedures:

• GRANT EXECUTE ON <procedure/function> TO <user>;

• procedures and functions are always executed with the
access permissions of the owner.

• after

GRANT EXECUTE ON <procedure/function> TO <user>;

the user can execute this procedure/function, even if he
has no access permission for the tables that are used by
the procedure.

• possibility for defining access permissions that are more
strict than GRANT ... ON <table> TO ...:
access is allowed only in a special context that is defined
by the procedure/function.

PL/SQL 169



Database Programming in SQL/ORACLE

Nested Tables under PL/SQL

Nested_Languages

Country Languages

D German 100

CH German 65

French 18

Italian 12

Romansch 1

FL NULL

F French 100
...

...

The use of nested tables in ORACLE causes some problems:
“Give all countries where german is spoken, and give the
percentage of the german language in these countries”

Such a query has to search the inner table for every tuple in
Nested_Languages.

• SELECT THE returns only a single object,

• no correlation with the surrounding tuple.

• use a (Cursor) loop.

PL/SQL 170

Database Programming in SQL/ORACLE

Nested Tables under PL/SQL

CREATE TABLE tempCountries

(Country VARCHAR2(4),

Language VARCHAR2(20),

Percentage NUMBER);

CREATE OR REPLACE PROCEDURE Search_Countries

(the_Language IN VARCHAR2)

IS CURSOR countries IS

SELECT Code

FROM Country;

BEGIN

DELETE FROM tempCountries;

FOR the_country IN countries

LOOP

INSERT INTO tempCountries

SELECT the_country.code,Name,Percentage

FROM THE(SELECT Languages

FROM Nested_Language

WHERE Country = the_country.Code)

WHERE Name = the_Language;

END LOOP;

END;

/

EXECUTE Search_Countries(’German’);

SELECT * FROM tempCountries;
PL/SQL 171



Database Programming in SQL/ORACLE

• Up to now: functions and procedures are explicitly called by
the user.

• Triggers: invocation is caused by an event inside the
database.

PL/SQL 172

Database Programming in SQL/ORACLE

Intermezzo: integrity constraints

• column constraints and table constraints,

• domain constraints,

• prohobiting Null values,

• uniqueness and primary key constraints,

• CHECK-constraints,

! these are only conditions on a single row of a single table.

Assertions

• conditions that are concerned with the whole database
state.

CREATE ASSERTION <name> CHECK (<condition>)

• not supported by ORACLE8.

⇒ other solution?

PL/SQL 173



Database Programming in SQL/ORACLE

Trigger

• special form of PL/SQL procedures,

• are invoked when a certain event takes place.

• Special case of active rules according to the
Event-Condition-Action paradigm.

• assigned to a table (often, to a certain column of this table).

• invocation is caused by detection of some event in the table
(insertion, modification, or deletion of a row).

• execution also depends on a condition on the database
state.

• action:

• before or after execution of the activating statement

• executed once per activating statement (statement trigger)
or once for each effected row (Row-Trigger).

• the body of the trigger can read the old and the new value
of the tuple,

• the body of the trigger can write the new value of the tuple.

PL/SQL 174

Database Programming in SQL/ORACLE

Trigger

CREATE [OR REPLACE] TRIGGER <trigger-name>

BEFORE | AFTER

{INSERT | DELETE | UPDATE} [OF <column-list>]

[ OR {INSERT | DELETE | UPDATE} [OF <column-list>]]
...

[ OR {INSERT | DELETE | UPDATE} [OF <column-list>]]

ON <table>

[REFERENCING OLD AS <name> NEW AS <name>]

[FOR EACH ROW]

[WHEN (<condition>)]

<pl/sql-block>;

• BEFORE, AFTER: trigger is invoked before/after the activating
operation.

• OF <column> (only for UPDATE) restricts the activating event
to the specified column.

• access to the fields of the tuple before and after executing
the activating action by :OLD or :NEW. (Aliasing by
REFERENCING OLD AS ... NEW AS ...).

Writing the :NEW values only with BEFORE triggers.

• FOR EACH ROW: row-Trigger, otherwise statement trigger.

• WHEN (<condition>): additional condition; OLD and NEW

are allowed in <condition>.
PL/SQL 175



Database Programming in SQL/ORACLE

Trigger: Example

If a country code is changed, this modification is propagated to
the relation Province:

CREATE OR REPLACE TRIGGER change_Code

BEFORE UPDATE OF Code ON Country

FOR EACH ROW

BEGIN

UPDATE Province

SET Country = :NEW.Code

WHERE Country = :OLD.Code;

END;

/

UPDATE Country

SET Code = ’UK’

WHERE Code = ’GB’;

PL/SQL 176

Database Programming in SQL/ORACLE

Trigger: Example

If a country is created, an entry in Politics is created with the
current date:

CREATE TRIGGER new_Country

AFTER INSERT ON Country

FOR EACH ROW

BEGIN

INSERT INTO Politics (Country,Independence)

VALUES (:NEW.Code,SYSDATE);

END;

/

INSERT INTO Country (Name,Code)

VALUES (’Lummerland’, ’LU’);

SELECT * FROM Politics;

PL/SQL 177



Database Programming in SQL/ORACLE

Trigger: Mutating Tables

• row-based trigger are always called immediately
before/after changing the row

• each invocation of the triggers sees another database state
of the table on which it is defined, and of the tables which
are changed by the trigger

• ; result depends on the order of tuples.

ORACLE: affected tables are marked as mutating during the
whole action. They cannot be read by the trigger.

Problem: a too strict criterion.

• if a trigger should access the table on which it is defined:

– only the activating tuple should be read/written by the
trigger: Use a BEFORE trigger and the :NEW and :OLD

variables

– additional tuples must be used: if possible, use a
statement trigger

– otherwise, use auxiliary tables.

PL/SQL 178

Database Programming in SQL/ORACLE

INSTEAD OF Triggers

• view updates: updates must be translated to base tables.

• view updating mechanisms are restricted.

• INSTEAD OF-Trigger: modification of a view is replaced by
other SQL statements.

CREATE [OR REPLACE] TRIGGER <trigger-name>

INSTEAD OF

{INSERT | DELETE | UPDATE} ON <view>

[REFERENCING OLD AS <name> NEW AS <name>]

[FOR EACH STATEMENT]

<pl/sql-block>;

• cannot be restricted to columns

• no WHEN clause

• Default: FOR EACH ROW

PL/SQL 179



Database Programming in SQL/ORACLE

View Updates and INSTEAD OF Triggers

CREATE OR REPLACE VIEW AllCountry AS

SELECT Name, Code, Population, Area,

GDP, Population/Area AS Density,

Inflation, population_growth,

infant_mortality

FROM Country, Economy, Population

WHERE Country.Code = Economy.Country

AND Country.Code = Population.Country;

INSERT INTO AllCountry

(Name, Code, Population, Area, GDP,

Inflation, population_growth, infant_mortality)

VALUES (’Lummerland’,’LU’,4,1,0.5,0,25,0);

Error message: "Uber ein Join-View kann nur eine Basistabelle
modifiziert werden.

PL/SQL 180

Database Programming in SQL/ORACLE

View Updates and INSTEAD OF Triggers

CREATE OR REPLACE TRIGGER InsAllCountry

INSTEAD OF INSERT ON AllCountry

FOR EACH ROW

BEGIN

INSERT INTO

Country (Name,Code,Population,Area)

VALUES (:NEW.Name, :NEW.Code,

:NEW.Population, :NEW.Area);

INSERT INTO Economy (Country,Inflation)

VALUES (:NEW.Code, :NEW.Inflation);

INSERT INTO Population

(Country, Population_Growth,infant_mortality)

VALUES (:NEW.Code, :NEW.Population_Growth,

:NEW.infant_mortality);

END;

/

• updates Country, Economy and Population.

• trigger New_Country (AFTER INSERT ON COUNTRY) also
updates Politics.

PL/SQL 181



Database Programming in SQL/ORACLE

Error Handling

• Declaration Section: declaration (of names) of user-defined
exceptions.

DECLARE <exception> EXCEPTION;

• Exception Section: Definition of actions that have to be
executed in case of an exception.

WHEN <exception>

THEN <PL/SQL-Statement>;

WHEN OTHERS THEN <PL/SQL-Statement>;

• Exceptions can be raised on arbitrary places on the
PL/SQL block by the RAISE statement.

IF <condition>

THEN RAISE <exception>;

Execution

• raise of an exception

• execute the corresponding action in the WHEN

• leave innermost block (use anonymous blocks)

PL/SQL 182

Database Programming in SQL/ORACLE

Triggers/Error Handling: Example

In the afternoon, it is not allowed to delete cities:

CREATE OR REPLACE TRIGGER bla

BEFORE DELETE ON City

BEGIN

IF TO_CHAR(SYSDATE,’HH24:MI’)

BETWEEN ’12:00’ AND ’18:00’

THEN RAISE_APPLICATION_ERROR

(-20101,’Unerlaubte Aktion’);

END IF;

END;

/

PL/SQL 183



Database Programming in SQL/ORACLE

Example

CREATE OR REPLACE TRIGGER bla

INSTEAD OF INSERT ON AllCountry

FOR EACH ROW

BEGIN

IF user=’may’

THEN NULL;

END IF;

...

END;

/

INSERT INTO AllCountry

(Name, Code, Population, Area, GDP, Inflation,

population_growth, infant_mortality)

VALUES (’Lummerland’,’LU’,4,1,0.5,0,25,0);

1 Zeile wurde erstellt.

SQL> select * from allcountry where Code=’LU’;

Es wurden keine Zeilen ausgewaehlt

(from A. Christiansen, M. Höding, C. Rautenstrauch and
G. Saake, ORACLE 8 effizient einsetzen, Addison-Wesley,
1998)
PL/SQL 184

Database Programming in SQL/ORACLE

Further PL/SQL Features

• Packages: encapsulate data and programs;

• FOR UPDATE option in cursor declarations;

• cursor variables;

• exception handlers;

• named parameter passing;

• PL-SQL built-in functions: parsing, string operations, date
operations, numerical functions;

• built-in packages.

• definition of complex transactions,

• usage of SAVEPOINTs for transactions,

PL/SQL 185



Database Programming in SQL/ORACLE

Object-Relational Database Systems

Integration of relational concepts and object orientation:

• complex data types: extend the domain concept of SQL-2

• abstract data types (“Object types”): object identity and
encapsulation of internal functionality.

• specialization: class hierarchy; subtypes as specialization
of more general types.

• subtables.

• functions as parts of ADT’s or tables, or free functions.

• method calls inside of SELECT statements

Object Orientation in ORACLE 8 186

Database Programming in SQL/ORACLE

Object Orientation

• distinction between the state and behavior of an object.

• in ORACLE 8: tables of tuples vs. object tables (which
contain objects)

• in contrast to a tuple, an object has attributes (which
describe its state) and methods (for querying and changing
its state).

• type defines signature of a set of instances (objects)

• already mentioned: complex attribute types, having only
value attributes, no methods.

• methods: procedures and functions

• MAP/ORDER-function: order of instances of an object type

• columns in a relational table can be object-valued or
reference-valued.

• Objects: value attributes and reference attributes.

• ORACLE8: no subtypes, no inheritance.

Type declaration: attributes, signatures of methods,
READ/WRITE access characteristics.
Type Body: implementation of the methods in PL/SQL.

Object Orientation in ORACLE 8 187



Database Programming in SQL/ORACLE

Object Type Declarations

CREATE [OR REPLACE] TYPE <type> AS OBJECT

(<attr> <datatype>,
...

<attr> REF <object-datatype>,
...

MEMBER FUNCTION <func-name> [(<parameter-list>)]

RETURN <datatype>,
...

MEMBER PROCEDURE <proc-name> [(<parameter-list>)],
...

[ MAP MEMBER FUNCTION <func-name>

RETURN <datatype>, |

ORDER MEMBER FUNCTION <func-name>(<var> <type>)

RETURN <datatype>,]

[ <pragma-declaration-list>]

);

/

• <parameter-list> as in PL/SQL,

• similar to CREATE TABLE, but no integrity constraints (are
done later with the definition of (object) tables)

Object Orientation in ORACLE 8 188

Database Programming in SQL/ORACLE

PRAGMA Clauses:

Read/Write Access Characteristics

<pragma-declaration-list>:

for every method, a PRAGMA clause is given:

PRAGMA RESTRICT_REFERENCES

(<method_name>, <feature-list>);

<feature-list>:

WNDS Writes no database state,

WNPS Writes no package state,

RNDS Reads no database state,

RNPS Reads no package state.

Functions: are only executed if it is explicitly asserted that
they do not change the database state:

PRAGMA RESTRICT_REFERENCES

(<function_name>, WNPS, WNDS);

MAP/ORDER functions: no database access allowed

PRAGMA RESTRICT_REFERENCES

(<function-name>, WNDS, WNPS, RNPS, RNDS)

⇒ uses only the state of the object itself.

Object Orientation in ORACLE 8 189



Database Programming in SQL/ORACLE

Example: Geo-Coordinates

• method Distance(geo-coord-value)

• MAP method: distance from Greenwich.

CREATE OR REPLACE TYPE GeoCoord AS OBJECT

(Longitude NUMBER,

Latitude NUMBER,

MEMBER FUNCTION

Distance (other IN GeoCoord)

RETURN NUMBER,

MAP MEMBER FUNCTION

Distance_Greenwich RETURN NUMBER,

PRAGMA RESTRICT_REFERENCES

(Distance, WNPS, WNDS, RNPS, RNDS),

PRAGMA RESTRICT_REFERENCES

(Distance_Greenwich, WNPS, WNDS, RNPS, RNDS)

);

/

Object Orientation in ORACLE 8 190

Database Programming in SQL/ORACLE

Type Body

• Implementation of object methods,

• has to conform with the signature given for CREATE TYPE,

• for all declared methods, an implementation must be given.

• variable SELF for accessing the attributes of the host object.

Object Orientation in ORACLE 8 191



Database Programming in SQL/ORACLE

Type Body

CREATE [OR REPLACE] TYPE BODY <type>

AS

MEMBER FUNCTION <func-name> [(<parameter-list>)]

RETURN <datatype>

IS

[<var-decl-list>;]

BEGIN <PL/SQL-code> END;
...

MEMBER PROCEDURE <proc-name> [(<parameter-list>)]

IS

[<var-decl-list>;]

BEGIN <PL/SQL-code> END;
...

[MAP MEMBER FUNCTION <func-name>

RETURN <datatype> |

ORDER MEMBER FUNCTION <func-name>(<var> <type>)

RETURN <datatype>

IS

[<var-decl-list>;]

BEGIN <PL/SQL-code> END;]

END;

/

Object Orientation in ORACLE 8 192

Database Programming in SQL/ORACLE

Object Creation

• Constructor method:

<type>(<arg_1>, ..., <arg_n>)

Method Invocation

(from a PL/SQL program)

<object>.<method-name>(<argument-list>)

using SELF, <object> can invoke its own methods.

Object Orientation in ORACLE 8 193



Database Programming in SQL/ORACLE

Example: Geo-Coordinates

CREATE OR REPLACE TYPE BODY GeoCoord

AS

MEMBER FUNCTION Distance (other IN GeoCoord)

RETURN NUMBER

IS

BEGIN

RETURN 6370 * ACOS(COS(SELF.latitude/180*3.14)

* COS(other.latitude/180*3.14)

* COS((SELF.longitude -

other.longitude)/180*3.14)

+ SIN(SELF.latitude/180*3.14)

* SIN(other.latitude/180*3.14));

END;

MAP MEMBER FUNCTION Distance_Greenwich

RETURN NUMBER

IS

BEGIN

RETURN SELF.Distance(GeoCoord(0, 51));

END;

END;

/

Object Orientation in ORACLE 8 194

Database Programming in SQL/ORACLE

Column Objects

• Attribute of a tuple (or of an object) can be object-valued,

• no OID, i.e., not referencable.

Example: Geo-Coordinates

CREATE TABLE Mountain

(Name VARCHAR2(20) CONSTRAINT MountainKey PRIMARY KEY,

Height NUMBER CONSTRAINT MountainHeight

CHECK (Height >= 0),

Coordinates GeoCoord CONSTRAINT MountainCoord

CHECK ((Coordinates.Longitude >= -180) AND

(Coordinates.Longitude <= 180) AND

(Coordinates.Latitude >= -90) AND

(Coordinates.Latitude <= 90)));

• Constraints are given as usual with the table definition:

INSERT INTO Mountain

VALUES (’Feldberg’, 1493, GeoCoord(8, 48));

SELECT Name, mt.coordinates.distance(geocoord(0, 90))

FROM Mountain mt;

• use the tuple-variable mt for disambiguating the navigation
path to coordinates.distance.

Object Orientation in ORACLE 8 195



Database Programming in SQL/ORACLE

Row Objects

• elements of Object tables,

• have a unique OID and are referencable.

• OID corresponds to the primary key and is specified
together with (further) integrity constraints in the table
definition.

• seamless combination with referential integrity constraints
from object tables to existing relational tables.

CREATE TABLE <name> OF <object-datatype>

[(<constraint-list>)];

<constraint-list>:

• attribute constraints correspond to column constraints:

<attr-name> [DEFAULT <value>]

[<colConstraint> ... <colConstraint>]

• table constraints: syntax as for relational tables.

Object Orientation in ORACLE 8 196

Database Programming in SQL/ORACLE

Row Objects

Example: City_Type

CREATE OR REPLACE TYPE City_Type AS OBJECT

(Name VARCHAR2(35),

Province VARCHAR2(32),

Country VARCHAR2(4),

Population NUMBER,

Coordinates GeoCoord,

MEMBER FUNCTION Distance (other IN City_Type)

RETURN NUMBER,

PRAGMA RESTRICT_REFERENCES

(Distance, WNPS, WNDS, RNPS, RNDS));

/

CREATE OR REPLACE TYPE BODY City_Type

AS

MEMBER FUNCTION Distance (other IN City_Type)

RETURN NUMBER

IS

BEGIN

RETURN SELF.coordinates.distance(other.coordinates);

END;

END;

/

Object Orientation in ORACLE 8 197



Database Programming in SQL/ORACLE

Object Tables: Row Objects

• the (multi-column) primary key is specified as a table
condition,

• primary key must not contain reference attributes,

• the foreign key constraint to the relational table Country is
also specified as a table condition:

CREATE TABLE City_ObjTab OF City_Type

(PRIMARY KEY (Name, Province, Country),

FOREIGN KEY (Country) REFERENCES Country(Code));

• Objects are inserted into object tables by using the object
constructor <object-datatype>:

INSERT INTO City_ObjTab

SELECT City_Type

(Name, Province, Country, Population,

GeoCoord(Longitude, Latitude))

FROM City

WHERE Country = ’D’

AND NOT Longitude IS NULL;

Object Orientation in ORACLE 8 198

Database Programming in SQL/ORACLE

Using Objects

• select a row object as a whole,

VALUE (<var>)

in combination with aliasing

FROM <table> <var>

• e.g. for a comparison or in an ORDER BY clause.

Example

SELECT VALUE(cty)

FROM City_ObjTab cty;

VALUE (Cty)(Name, Province, Country, Population,

Coordinates(Longitude, Latitude))

City_Type(’Berlin’, ’Berlin’, ’D’, 3472009, GeoCoord(13, 52))

City_Type(’Bonn’, ’Nordrh.-Westf., ’D’, 293072, GeoCoord(8, 50))

City_Type(’Stuttgart’, ’Baden-Wuertt., ’D’, 588482, GeoCoord(9, 49))
...

Object Orientation in ORACLE 8 199



Database Programming in SQL/ORACLE

Using Objects: VALUE

• check equality of objects

• object as argument of a method

SELECT cty1.Name, cty2.Name,

cty1.coordinates.Distance(cty2.coordinates)

FROM City_ObjTab cty1, City_ObjTab cty2

WHERE NOT VALUE(cty1) = VALUE(cty2);

SELECT cty1.Name, cty2.Name,

cty1.Distance(VALUE(cty2))

FROM City_ObjTab cty1, City_ObjTab cty2

WHERE NOT VALUE(cty1) = VALUE(cty2);

• assignment of an object to a PL/SQL variable by using a
SELECT INTO statement:

SELECT VALUE(<var>) INTO <PL/SQL-Variable>

FROM <tabelle> <var>

WHERE ... ;

Object Orientation in ORACLE 8 200

Database Programming in SQL/ORACLE

Object References

• Additional datatype for attributes: references to objects

<ref-attr> REF <object-datatype>

• PRIMARY KEYs must not contain REF attributes.

• object type as target of a reference

• only objects that have an OID – i.e., row objects in an
object table – can be referenced.

• object type can be used in several tables

• restriction to a certain table can be specified by constraints
using the SCOPE concept:

– as column constraint (only for relational tables):
<ref-attr> REF <object-datatype>

SCOPE IS <object-table>

– as table constraint:
SCOPE FOR (<ref-attr>) IS <object-table>

• generation of a reference (selection of an OID):

SELECT ..., REF(<var>), ...

FROM <object-table> <var>

WHERE ... ;

Object Orientation in ORACLE 8 201



Database Programming in SQL/ORACLE

Example: Object Type Organization

CREATE TYPE Member_Type AS OBJECT

(Country VARCHAR2(4),

Type VARCHAR2(30));

/

CREATE TYPE Member_List_Type AS

TABLE OF Member_Type;

/

CREATE OR REPLACE TYPE Organization_Type AS OBJECT

(Name VARCHAR2(80),

Abbrev VARCHAR2(12),

Members Member_List_Type,

Established DATE,

has_hq_in REF City_Type,

MEMBER FUNCTION is_member (the_country IN VARCHAR2)

-- EU.is_member(’SLO’) = ’membership applicant’

RETURN VARCHAR2,

MEMBER FUNCTION people RETURN NUMBER,

MEMBER FUNCTION number_of_members RETURN NUMBER,

MEMBER PROCEDURE add_member

(the_country IN VARCHAR2, the_type IN VARCHAR2),

PRAGMA RESTRICT_REFERENCES (is_member, WNPS, WNDS),

PRAGMA RESTRICT_REFERENCES (people, WNDS, WNPS));

PRAGMA RESTRICT_REFERENCES (number_of_members, WNDS, WNPS));

/

Object Orientation in ORACLE 8 202

Database Programming in SQL/ORACLE

Example: Object Type Organization

Table Definition:

CREATE TABLE Organization_ObjTab OF Organization_Type

(Abbrev PRIMARY KEY,

SCOPE FOR (has_hq_in) IS City_ObjTab)

NESTED TABLE Members STORE AS Members_nested;

Inserting objects via the object constructor:

INSERT INTO Organization_ObjTab VALUES

(Organization_Type(’European Community’, ’EU’,

Member_List_Type(), NULL, NULL));

Reference attribute has_hq_in:

UPDATE Organization_ObjTab

SET has_hq_in =

(SELECT REF(cty)

FROM City_ObjTab cty

WHERE Name = ’Brussels’

AND Province = ’Brabant’

AND Country = ’B’)

WHERE Abbrev = ’EU’;

Object Orientation in ORACLE 8 203



Database Programming in SQL/ORACLE

Selecting Object Attributes

• value attributes

SELECT Name, Abbrev, Members

FROM Organization_ObjTab;

Name Abbrev Members

European Community EU Member_List_Type(...)

• Reference attributes:

SELECT <ref-attr-name>

yields an OID:

SELECT Name, Abbrev, has_hq_in

FROM Organization_ObjTab;

Name Abbrev has_hq_in

European Community EU <oid>

• DEREF(<oid>) yields the corresponding object:

SELECT Abbrev, DEREF(has_hq_in)

FROM Organization_ObjTab;

Abbrev has_hq_in

EU City_Type(’Brussels’, ’Brabant’, ’B’,

951580, GeoCoord(4, 51))

Object Orientation in ORACLE 8 204

Database Programming in SQL/ORACLE

Usage of Reference Attributes

• Attributes and methods of a referenced object are
addressed by path expressions of the form

SELECT <ref-attr-name>.<attr-name>

(“navigational access”).

• aliasing with an object variable to disambiguate the path
expression.

SELECT Abbrev, org.has_hq_in.name

FROM Organization_ObjTab org;

Abbrev has_hq_in.Name

EU Brussels

REF and DEREF can be used instead of VALUE:

SELECT VALUE(cty) FROM City_ObjTab cty;

and
SELECT DEREF(REF(cty)) FROM City_ObjTab cty;

are equivalent.

Object Orientation in ORACLE 8 205



Database Programming in SQL/ORACLE

Cyclic References

• City_Type: country REF Country_Type

• Country_Type: capital REF City_Type

• declaration of each of the datatypes requires the definition
of some other.

• Definition of incomplete types
“forward declaration”

CREATE TYPE <name>;

/

• is replaced later by a complete type declaration

Object Orientation in ORACLE 8 206

Database Programming in SQL/ORACLE

Cyclic References: Example

CREATE OR REPLACE TYPE City_Type

/

CREATE OR REPLACE TYPE Country_Type AS OBJECT

(Name VARCHAR2(32),

Code VARCHAR2(4),

Capital REF City_Type,

Area NUMBER,

Population NUMBER);

/

CREATE OR REPLACE TYPE Province_Type AS OBJECT

(Name VARCHAR2(32),

Country REF Country_Type,

Capital REF City_Type,

Area NUMBER,

Population NUMBER);

/

CREATE OR REPLACE TYPE City_Type AS OBJECT

(Name VARCHAR2(35),

Province REF Province_Type,

Country REF Country_Type,

Population NUMBER,

Coordinates GeoCoord);

/

Object Orientation in ORACLE 8 207



Database Programming in SQL/ORACLE

Incomplete Datatypes: Usage and Example

Incomplete datatypes can only be used for defining references
to them, not for defining columns or nested tables:

CREATE TYPE City_type;

/

allowed:

CREATE TYPE city_list AS TABLE OF REF City_type;

/

CREATE OR REPLACE TYPE Country_Type AS OBJECT

(Name VARCHAR2(32),

Code VARCHAR2(4),

Capital REF City_Type);

/

only allowed if city_type is complete:

CREATE TYPE city_list AS TABLE OF City_type;

/

CREATE OR REPLACE TYPE Country_Type AS OBJECT

(Name VARCHAR2(32),

Code VARCHAR2(4),

Capital City_Type);

/

Object Orientation in ORACLE 8 208

Database Programming in SQL/ORACLE

Referential Integrity

• Cf. FOREIGN KEY ... REFERENCES ... ON

DELETE/UPDATE CASCADE

• modifications of objects:
OID remains unchanged
→ referential integrity is preserved.

• deletion of objects:
dangling references possible.

Check with

WHERE <ref-attribute> IS DANGLING

Usage e.g. in an AFTER trigger:

UPDATE <table>

SET <attr> = NULL

WHERE <attr> IS DANGLING;

Object Orientation in ORACLE 8 209



Database Programming in SQL/ORACLE

Methods: Functions and Procedures

• TYPE BODY contains the implementations of the methods in
PL/SQL

• PL/SQL is adapted to nested tables and some
object-oriented features.

• PL/SQL does not support navigation along path
expressions (which is allowed in SQL).

• every MEMBER METHOD has an implicit parameter SELF that
references the host object itself.

• table-valued attributes can be handled inside PL/SQL like
PL/SQL-tables:

Built-in methods for collections (PL/SQL-Tables) can also
be applied to table-valued attributes:

<attr-name>.COUNT: number of tuples in the nested table

Not allowed in SQL statements that are embedded into the
PL/SQL body – e.g. SELECT <attr>.COUNT.

• future extension: Java

Object Orientation in ORACLE 8 210

Database Programming in SQL/ORACLE

CREATE OR REPLACE TYPE BODY Organization_Type IS

MEMBER FUNCTION is_member (the_country IN VARCHAR2)

RETURN VARCHAR2

IS

BEGIN

IF SELF.Members IS NULL OR SELF.Members.COUNT = 0

THEN RETURN ’no’; END IF;

FOR i in 1 .. Members.COUNT

LOOP

IF the_country = Members(i).country

THEN RETURN Members(i).type; END IF;

END LOOP;

RETURN ’no’;

END;

MEMBER FUNCTION people RETURN NUMBER IS

p NUMBER;

BEGIN

SELECT SUM(population) INTO p

FROM Country ctry

WHERE ctry.Code IN

(SELECT Country

FROM THE (SELECT Members

FROM Organization_ObjTab org

WHERE org.Abbrev = SELF.Abbrev));

RETURN p;

END;
Object Orientation in ORACLE 8 211



Database Programming in SQL/ORACLE

MEMBER FUNCTION number_of_members RETURN NUMBER

IS

BEGIN

IF SELF.Members IS NULL THEN RETURN 0; END IF;

RETURN Members.COUNT;

END;

MEMBER PROCEDURE add_member

(the_country IN VARCHAR2, the_type IN VARCHAR2) IS

BEGIN

IF NOT SELF.is_member(the_country) = ’no’

THEN RETURN; END IF;

IF SELF.Members IS NULL THEN

UPDATE Organization_ObjTab

SET Members = Member_List_Type()

WHERE Abbrev = SELF.Abbrev;

END IF;

INSERT INTO

THE (SELECT Members

FROM Organization_ObjTab org

WHERE org.Abbrev = SELF.Abbrev)

VALUES (the_country, the_type);

END;

END;

/

• FROM THE(SELECT ...) cannot be replaced by FROM

SELF.Members (PL/SQL vs. SQL).
Object Orientation in ORACLE 8 212

Database Programming in SQL/ORACLE

Method Calls: Functions

• MEMBER FUNCTIONS can be invoked from SQL and PL/SQL
by <object>.<function>(<argument-list>).

• parameterless functions: <object>.<function>()

• from SQL: <object> is given as a path expression with
alias.

SELECT Name, org.is_member(’D’)

FROM Organization_ObjTab org

WHERE NOT org.is_member(’D’) = ’no’;

• MEMBER PROCEDURES can be invoked only from PL/SQL by
<object>.<procedure>(<argument-list>).

• free procedures in PL/SQL have to be used for invoking
MEMBER PROCEDURES from SQL.

Object Orientation in ORACLE 8 213



Database Programming in SQL/ORACLE

Method Calls: Procedures

CREATE OR REPLACE PROCEDURE make_member

(the_org IN VARCHAR2, the_country IN VARCHAR2,

the_type IN VARCHAR2) IS

n NUMBER;

c Organization_Type;

BEGIN

SELECT COUNT(*) INTO n

FROM Organization_ObjTab

WHERE Abbrev = the_org;

IF n = 0

THEN INSERT INTO Organization_ObjTab

VALUES(Organization_Type(NULL,

the_org, Member_List_Type(), NULL, NULL));

END IF;

SELECT VALUE(org) INTO c

FROM Organization_ObjTab org

WHERE Abbrev = the_org;

IF c.is_member(the_country)=’no’ THEN

c.add_member(the_country, the_type);

END IF;

END;

/

EXECUTE make_member(’EU’, ’USA’, ’special member’);

EXECUTE make_member(’XX’, ’USA’, ’member’);

Object Orientation in ORACLE 8 214

Database Programming in SQL/ORACLE

Copying all data from the relational tables Organization and
is_member to the object table Organization_ObjTab:

INSERT INTO Organization_ObjTab

(SELECT Organization_Type

(Name, Abbreviation, NULL, Established, NULL)

FROM Organization);

CREATE OR REPLACE PROCEDURE Insert_All_Members IS

BEGIN

FOR the_membership IN

(SELECT * FROM is_member)

LOOP make_member(the_membership.organization,

the_membership.country,

the_membership.type);

END LOOP;

END;

/

EXECUTE Insert_All_Members;

UPDATE Organization_ObjTab org

SET has_hq_in =

(SELECT REF(cty)

FROM City_ObjTab cty, Organization old

WHERE org.Abbrev = old.Abbreviation

AND cty.Name = old.City

AND cty.Province = old.Province

AND cty.Country = old.Country);

Object Orientation in ORACLE 8 215



Database Programming in SQL/ORACLE

Using Objects

CREATE OR REPLACE FUNCTION is_member_in

(the_org IN VARCHAR2, the_country IN VARCHAR2)

RETURN is_member.Type%TYPE IS

c is_member.Type%TYPE;

BEGIN

SELECT org.is_member(the_country) INTO c

FROM Organization_ObjTab org

WHERE Abbrev=the_org;

RETURN c;

END;

/

The system-owned table DUAL can be used for displaying the
result of free functions.

SELECT is_member_in(’EU’, ’SLO’)

FROM DUAL;

is_member_in(’EU’, ’SLO’)

applicant

It is not (at least not in ORACLE 8.0) possible to change table
contents by using path expressions:

UPDATE Organization_ObjTab org

SET org.has_hq_in.Name = ’UNO City’ -- NOT ALLOWED

WHERE org.Abbrev = ’UN’;

Object Orientation in ORACLE 8 216

Database Programming in SQL/ORACLE

ORDER- and MAP Methods

• in contrast to most data types, object types do not have an
inherent order.

• an order on objects of some type can be defined via
functional methods.

• ORACLE 8: for each object type, a MAP FUNCTION or an
ORDER FUNCTION can be specified.

MAP function:

• no parameters,

• maps each object to a number.

• linear order on an object type, “absolute value”

• suitable both for comparisons <, >, and BETWEEN, and for
ORDER BY.

ORDER function:

• has one argument of the same object type that is
compared to the host object.

• suitable for comparisons <, >, but in general not for
sorting.

• MAP and ORDER functions require PRAGMA

RESTRICT_REFERENCES (<name>, WNDS, WNPS, RNPS,

RNDS), i.e., they must not contain any database access.

Object Orientation in ORACLE 8 217



Database Programming in SQL/ORACLE

MAP Methods: Example

MAP method on GeoCoord :

CREATE OR REPLACE TYPE BODY GeoCoord

AS

...

MAP MEMBER FUNCTION Distance_Greenwich

RETURN NUMBER

IS

BEGIN

RETURN SELF.Distance(GeoCoord(0, 51));

END;

END;

/

SELECT Name, cty.coordinates.longitude,

cty.coordinates.latitude

FROM City_ObjTab cty

WHERE NOT coordinates IS NULL

ORDER BY coordinates;

Object Orientation in ORACLE 8 218

Database Programming in SQL/ORACLE

MAP Methods

Some operations are not allowed in the body of MAP methods:

• no database queries:

In Organization_Type, People cannot be used as MAP.

• no built-in methods of nested tables:

In Organization_Type, number_of_members can also not
be used as MAP method.

Object Orientation in ORACLE 8 219



Database Programming in SQL/ORACLE

ORDER Methods

• comparison between SELF an another object of the same
type that is given as a parameter.

• result: -1 (SELF < parameter), 0 (equality), or 1 (SELF >

parameter)

• in case of ORDER BY, the objects are compared pairwise
and output according to the results of the ORDER method.

• an example for this a soccer league table: a team is placed
higher than another it it has more points. In case of an
equal number of point, the goal difference decides. If this
also coincides, the number of scored goals decides (cf.
exercises).

Object Orientation in ORACLE 8 220

Database Programming in SQL/ORACLE

Indexes on Attributes of Objects

Indexes can also be created over attributes of objects:

CREATE INDEX <name>

ON <object-table-name>.<attr>[.<attr>]∗;

• indexes cannot be created for complex attributes:

-- not allowed:

CREATE INDEX city_index

ON City_ObjTab(coordinates);

• indexes can be created for atomic components of complex
attributes:

CREATE INDEX city_index

ON City_ObjTab(coordinates.Longitude,

coordinates.Latitude);

Access Permissions for Objects

Permission to use an object type:

GRANT EXECUTE ON <Object-datatype> TO ...

• when using an object type, its methods (including its
constructur method) play the major role.

Object Orientation in ORACLE 8 221



Database Programming in SQL/ORACLE

Modifications of Object Types

• using object types and reference attributes induces a
network that is similar to the one defined by keys and
referential integrity constraints.

• modifications of object types in ORACLE 8.0 are restricted:
CREATE OR REPLACE TYPE and ALTER TYPE are (at least in
ORACLE 8.0) not allowed if the object type is used
somewhere.

! it is not possible to add some attribute (or even only a
method!) to an object type that is used somewhere.

“In conclusion, carefully plan the object types for your database
so that you get things right the first time. Then keep your
fingers crossed and hope that things do not change once you
have everything up and running ( ORACLE 8: Architecture)”.

Object Orientation in ORACLE 8 222

Database Programming in SQL/ORACLE

A First Conclusion

• Data management in an object-oriented schema is
problematic already for minor schema modifications.

• application-oriented (non-relational) representation by
methods and free procedures and functions.

• integration of application-specific functionality is supported
by object methods.

⇒ Data management: relational model
user interface: object-oriented model.

Object Orientation in ORACLE 8 223



Database Programming in SQL/ORACLE

Object-Views

• powerful object views tailored to application-specific
requirements

Legacy Databases: integration of already existing databases
into a “modern”, object-oriented model:

define object views over the relational level:
“object abstractions”

Efficiency + user friendliness:
relational representation is often more efficient:

• nested tables internally stored as separate tables.

• n : m-Relationships: require pairs of nested tables.

⇒ definition of a relational base schema (conceptual model)
with object views (external schemata).

Modifiability: CREATE OR REPLACE TYPE and ALTER TYPE are
restricted

⇒ changes are captured by the redefinition of the object view
level.

Object Orientation in ORACLE 8 224

Database Programming in SQL/ORACLE

Object Views

User updates are given wrt. the external schema that is given
by object views:

• mapping of generic updates (INSERT, UPDATE, and DELETE)
to the conceptual/physical schema by INSTEAD OF-Triggers,
or

• generic updates are disallowed. Instead, the functionality is
provided by methods of object types that execute the
changes directly on the base tables.

Object Orientation in ORACLE 8 225



Database Programming in SQL/ORACLE

Object-Relational Views

• Tuple-views without methods:

CREATE [OR REPLACE] VIEW <name> (<column-list>) AS

<select-clause>;

• SELECT-clause: additional constructor method for objects
and nested tables.

• for creating nested tables for object views, the CAST and
MULTISET constructs are used.

Example

CREATE TYPE River_List_Entry AS OBJECT

(name VARCHAR2(20),

length NUMBER);

/

CREATE TYPE River_List AS

TABLE OF River_List_Entry;

/

CREATE OR REPLACE VIEW River_V

(Name, Length, Tributary_Rivers)

AS SELECT

Name, Length,

CAST(MULTISET(SELECT Name, Length FROM River

WHERE River = A.Name) AS River_List)

FROM River A;
Object Orientation in ORACLE 8 226

Database Programming in SQL/ORACLE

Object Views

• contain row objects, i.e., in this case, new objects are
defined,

• WITH OBJECT OID <attr-list> specifies how the
object-ID is computed based on the object state.

• use CAST and MULTISET.

CREATE [OR REPLACE] VIEW <name> OF <type>

WITH OBJECT OID (<attr-list>)

AS <select-statement>;

• in <select-statement> the object constructor is not used
explicitly!

Object Orientation in ORACLE 8 227



Database Programming in SQL/ORACLE

Object Views: Country

CREATE OR REPLACE TYPE Country_Type AS OBJECT

(Name VARCHAR2(32),

Code VARCHAR2(4),

Capital REF City_Type,

Area NUMBER,

Population NUMBER);

/

CREATE OR REPLACE VIEW Country_ObjV OF Country_Type

WITH OBJECT OID (Code)

AS

SELECT Country.Name, Country.Code, REF(cty),

Area, Country.Population

FROM Country, City_ObjTab cty

WHERE cty.Name = Country.Capital

AND cty.Province = Country.Province

AND cty.Country = Country.Code;

SELECT Name, Code, c.capital.name, Area, Population

FROM Country_ObjV c;

Object Orientation in ORACLE 8 228

Database Programming in SQL/ORACLE

Object Views: what’s not (yet?) allowed

• Object View must not contain nested tables,

• and it must not contain any result of a functional method of
objects of the base table.

Object View based on Organization_ObjTab:

CREATE OR REPLACE TYPE Organization_Ext_Type AS OBJECT

(Name VARCHAR2(80),

Abbrev VARCHAR2(12),

Members Member_List_Type,

established DATE,

has_hq_in REF City_Type,

number_of_people NUMBER);

/

CREATE OR REPLACE VIEW Organization_ObjV

OF Organization_Ext_Type

AS

SELECT Name, Abbrev, Members, established,

has_hq_in, org.people()

FROM Organization_ObjTab org;

ERROR in line 3:

ORA-00932: inconsistent datatypes

Both attributes are also not allowed alone.

Object Orientation in ORACLE 8 229



Database Programming in SQL/ORACLE

Conclusion

+ Compatibility with the basic concepts of ORACLE 7.
E.g., foreign key constraints from object tables to relational
tables.

+ object views allow for an object-oriented external schema.
User interaction can be mapped to the internal schema by
methods and INSTEAD OF-Triggers.

– Flexibility/Maturity:
types cannot be changed/extended.
(incremental!) adaptions of the schema not possible.

Object Orientation in ORACLE 8 230

Database Programming in SQL/ORACLE

New Object Relational Features in
ORACLE 9

• SQL type inheritance

• Object view hierarchies

• Type evolution

• User defined Aggregate Functions

• Generic and transient datatypes

• Function-based indexes

• Multi-level collections

• C++ interface to Oracle

• Java object storage

Object Orientation in ORACLE 9 231



Database Programming in SQL/ORACLE

SQL Type Inheritance

• Type hierarchy:

– supertype: parent base type

– subtype: derived type from the parent

– inheritance: connection from subtypes to supertypes in
a hierarchy

• Subtype:

– adding new attributes and methods

– overriding: redefining methods

• Polymorphism: object instance of a subtype can be
substituted for an object instance of any of its subtypes

Object Orientation in ORACLE 9 232

Database Programming in SQL/ORACLE

Hierarchy example

plant

tree flower

conifer

tree: subtype of plant

supertype of conifer

Object Orientation in ORACLE 9 233



Database Programming in SQL/ORACLE

FINAL and NOT FINAL Types and Methods

• Whole type marked as FINAL:
no subtypes can be derived

• Function marked as FINAL:
no overriding in subtypes

Example:

CREATE TYPE coord AS OBJECT (

latitude NUMBER,

longitude NUMBER) FINAL;

/

ALTER TYPE coord NOT FINAL;

CREATE TYPE example_typ AS OBJECT (

...

MEMBER PROCEDURE display(),

FINAL MEMBER FUNCTION move(x NUMBER, y NUMBER),

...

) NOT FINAL;

/

Object Orientation in ORACLE 9 234

Database Programming in SQL/ORACLE

Creating Subtypes

Supertype is given by UNDER parameter:

CREATE TYPE coord_with_height UNDER coord (

height NUMBER

) NOT FINAL;

/

Object Orientation in ORACLE 9 235



Database Programming in SQL/ORACLE

NOT INSTANTIABLE Types and Methods

• Types declared as NOT INSTANTIABLE:

– objects of this type cannot instantiated

– no constructor

– “abstract class”

• Methods declared as NOT INSTANTIABLE:

– implementation need not to be given

– also NOT INSTANTIABLE declaration of the whole type

Examples:

CREATE TYPE generic_person_type AS OBJECT (

...

) NOT INSTANTIABLE NOT FINAL;

/

CREATE TYPE example_type AS OBJECT (

...

NOT INSTANTIABLE MEMBER FUNCTION foobar(...)

RETURN NUMBER

) NOT INSTANTIABLE NOT FINAL;

/

ALTER TYPE example_type INSTANTIABLE;

Object Orientation in ORACLE 9 236

Database Programming in SQL/ORACLE

Overloading, Overriding

• Overloading: same method name but with different
parameters (signature)

CREATE TYPE example_type AS OBJECT ( ...

MEMBER PROCEDURE print(x NUMBER),

MEMBER PROCEDURE print(x NUMBER, y NUMBER),

MEMBER PROCEDURE print(x DATE),

... ); /

• Overriding: same method name with same signature in
subtypes

CREATE TYPE generic_shape AS OBJECT ( ...

MEMBER PROCEDURE draw(),

... ); /

CREATE TYPE circle_type UNDER generic_shape ( ...

MEMBER PROCEDURE draw(),

... ); /

Object Orientation in ORACLE 9 237



Database Programming in SQL/ORACLE

Attribute Substitutability

• At different places object types can be used:

– REF type attributes

– Object type attributes

– Collection type attributes

• Declared type can be substituted by any of its subtypes

• Special type forced by TREAT

Object Orientation in ORACLE 9 238

Database Programming in SQL/ORACLE

TREAT

• Function TREAT tries to modify the declared type into the
specified type,
e.g. a supertype into a subtype

• Returns NULL if conversion not possible

• Supported only for SQL, not for PL/SQL

Examples:

-- types: generic_shape and subtype circle_type

-- table xy:

-- column generic_col of type generic_shape

-- column circle_col of type circle_type

UPDATE xy SET circle_col =

TREAT generic_col AS circle_type)

-- Accessing functions:

SELECT TREAT(VALUE(x) AS circle_type).area() area

FROM graphics_object_table x;

Object Orientation in ORACLE 9 239



Database Programming in SQL/ORACLE

IS OF, SYS_TYPEID

• IS OF type: object instance can be converted into specified
type?
(same type or one of its subtypes)

Example:

-- type hierarchy:

-- plant_type ← tree_type ← conifer_type

SELECT VALUE(p)

FROM plant_table p

WHERE VALUE(p) IS OF (tree_type);

-- Result:

-- objects of type tree_type and conifer_type

• SYS_TYPEID: returns most specific type (subtype), syntax:

SYS_TYPEID(<object_type_value>)

Object Orientation in ORACLE 9 240

Database Programming in SQL/ORACLE

Summary of SQL Type Inheritance

• Type hierarchy: supertype, suptype

• FINAL, NOT FINAL types and methods

• INSTANTIABLE, NOT INSTANTIABLE types and methods

• Overloading, overriding

• Polymorphism, substitutability

• New functions: TREAT, IS OF, SYS_TYPEID

Object Orientation in ORACLE 9 241



Database Programming in SQL/ORACLE

Type Evolution

Now user-defined type may be changed:

• Add and drop attributes

• Add and drop methods

• Modify a numeric attribute (length, precision, scale)

• VARCHAR may be increased in length

• Changing FINAL and INSTANTIABLE properties

Object Orientation in ORACLE 9 242

Database Programming in SQL/ORACLE

Type Evolution: Dependencies

• Dependents: schema objects that reference a type, e.g.:

– table

– type, subtype

– PL/SQL: procedure, function, trigger

– indextype

– view, object view

• Changes: ALTER TYPE

• Propagation of type changes: CASCADE

• Compilable dependents (PL/SQL units, views, . . . ):
Marked invalid and recompiled at next use

• Table: new attributes added with NULL values, . . .

Object Orientation in ORACLE 9 243



Database Programming in SQL/ORACLE

Type Evolution: Example

CREATE TYPE coord AS OBJECT (

longitude NUMBER,

latitude NUMBER,

foobar VARCHAR2(10)

name VARCHAR2(10)

);

/

ALTER TYPE coord

ADD ATTRIBUTE (height NUMBER),

DROP ATTRIBUTE foobar,

MODIFY ATTRIBUTE (name VARCHAR2(20));

Object Orientation in ORACLE 9 244

Database Programming in SQL/ORACLE

Type Evolution: Limitations

• Pass of validity checks

• All attributes from a root type cannot be removed

• Inherited attributes, methods cannot be dropped

• Indexes, referential integrity constraints of dropped
attributes are removed

• Change from NOT FINAL to FINAL if no subtypes exist

• . . .

Object Orientation in ORACLE 9 245



Database Programming in SQL/ORACLE

Type Evolution: Revalidation

Fine tuning of the time for revalidation:

• ALTER TYPE:

– INVALIDATE: bypasses all checks

– CASCADE: propagation of type change to dependent
types and tables

– CASCADE (NOT) INCLUDING TABLE DATA: user-defined
columns

• ALTER TABLE:

– UPGRADE: conversion to latest version of each referenced
type

– UPGRADE (NOT) INCLUDING DATA: user-defined columns

Object Orientation in ORACLE 9 246

Database Programming in SQL/ORACLE

User Defined Aggregate Functions

• Set of pre-defined aggregate functions: MAX, MIN, SUM, . . .
They work on scalar data.

• New aggregate functions can be written for use with
complex data (object types, . . . ):

– feature of Extensibility Framework

– registered with the server

– usable in SQL DML statements (SELECT, . . . )

Object Orientation in ORACLE 9 247



Database Programming in SQL/ORACLE

Function-based Indexes

• Index based on the return values of a function or
expression:
Return values pre-computed and stored in the index.

• Functions have to be DETERMINISTIC:

– return the same value always

– no aggregate functions inside

– nested tables, REF, . . . are not allowed

• Additional privileges:

– EXECUTE for the used functions

– QUERY REWRITE

– Some settings for Oracle to use function-based indexes

• Speed-up of query evaluation that use these functions

Object Orientation in ORACLE 9 248

Database Programming in SQL/ORACLE

Function-based Indexes: Example

CREATE TYPE emp_t AS OBJECT (

name VARCHAR2(30),

salary NUMBER,

MEMBER FUNCTION bonus RETURN NUMBER DETERMINISTIC

); /

CREATE OR REPLACE TYPE BODY emp_t IS

MEMBER FUNCTION bonus RETURN NUMBER IS

BEGIN

RETURN SELF.salary * .1;

END;

END; /

CREATE TABLE emps OF emp_t;

CREATE INDEX emps_bonus_idx ON emps x (x.bonus());

CREATE INDEX emps_upper_idx ON emps (UPPER(name));

SELECT e

FROM emps e

WHERE e.bonus() > 2000

AND UPPER(e.name) = ’ALICE’;

Object Orientation in ORACLE 9 249



Database Programming in SQL/ORACLE

Java Object Storage

• Mapping of Oracle objects and collection types into Java
classes with automatically generated get and set

functions.

• Other direction (new in Oracle 9):
SQL types that map to existing Java classes
SQLJ = SQL types of Language Java

– SQL types that map to existing Java classes

– usable as object, attribute, column, row in object table

– querying and manipulating from SQL

Object Orientation in ORACLE 9 250

Database Programming in SQL/ORACLE

Java Object Storage: Example

CREATE TYPE person_t AS OBJECT

EXTERNAL NAME ’Person’ LANGUAGE JAVA

USING SQLData (

ss_no NUMBER(9) EXTERNAL NAME ’socialSecurityNo’,

name VARCHAR(30) EXTERNAL NAME ’name’,

...

MEMBER FUNCTION age () RETURN NUMBER

EXTERNAL NAME ’age () return int’,

...

STATIC create RETURN person_t

EXTERNAL NAME ’create () return Person’,

...

ORDER FUNCTION compare (in_person person_t)

RETURN NUMBER

EXTERNAL NAME ’isSame (Person) return int’

);

/

The corresponding Java class Person implements the
interface SQLData.

⇒ Next unit contains more about JDBC.

Object Orientation in ORACLE 9 251



Database Programming in SQL/ORACLE

Summary of New Features in Oracle 9

+ Introduction of inheritance

– Still missing OO features, e.g.:

– multiple inheritance

– data encapsulation (private, protected, public),
but partially possible by the view concept

+ Flexibility improved: types can now be changed/extended

Object Orientation in ORACLE 9 252

Database Programming in SQL/ORACLE

Embedded SQL, JDBC

Coupling Modes between Database and
Programming Languages

• extending the database language with programming
constructs (e.g., PL/SQL)

• extending programming languages with database
constructs:
persistent programming languages, database programming
languages

• embedding a database programming language into a
programming language: “Embedded SQL”

• database access from the programming language with
specialized constructs

Embedded SQL 253



Database Programming in SQL/ORACLE

Embedded SQL

• C, Pascal, C++

Impedance Mismatch with the SQL Embedding

• type systems do not fit

• different paradigms:
set-oriented vs. individual, scalar variables

Practical Solution

• Mapping of tuples/attributes to data types of the host
language

• iterative processing of the result set by a cursor

Effects on the Host Language

• Structure of the host language remains unchanged

• Every SQL statement can be embedded

• SQL statements are simply prefixed by EXEC SQL

• How to communicate between application program and
database?

Embedded SQL 254

Database Programming in SQL/ORACLE

Development of an Embedded SQL Application

Embedded SQL/C Program

e.g. demo1.pc
DB Catalog

Embedded-SQL-Precompiler

C-source code

e.g. demo1.c
Runtime Library

C-Compiler/Linker

executable program

e.g. demo1
Datenbank

Embedded SQL 255



Database Programming in SQL/ORACLE

Connection

Application with embedded SQL: database connection must be
established explicitly.

EXEC SQL CONNECT :username IDENTIFIED BY :passwd;

• username and passwd host variables of the types CHAR or
VARCHAR..

• strings are not allowed!

Equivalent:

EXEC SQL CONNECT :uid;

where uid is a string of the form "name/passwd".

Embedded SQL 256

Database Programming in SQL/ORACLE

Host Variables

• Communication between database and application
program

• output-variables for communication of values from the
database to the application program

• input-variables for the communication of values from the
application program to the database.

• assigned to each ost variable: indicator variable for
handling NULL values.

• to be declared in the Declare Section:

EXEC SQL BEGIN DECLARE SECTION;

int population; /* host variable */

short population\_ind; /* indicator variable */

EXEC SQL END DECLARE SECTION;

• in SQL-Statements, host variables and indicator variables
are prefixed with a colon (“:”)

• data types if the database and the programming language
must be compatible

Embedded SQL 257



Database Programming in SQL/ORACLE

Indicator Variables

Handling of Null values

Indicator Variables for Output-Variables:

• -1 : the attribute value is NULL, thus, the value of the host
variable is undefined.

• 0 : die host variable contains a valid attribute value.

• >0 : die host variable contains only a part of the attribute
value. The indicator variable gives the original length of the
attribute value.

• -2 : the host variable contains only a part of the attribute
value, where the original length is not known.

Indicator Variables for Input-Variables:

• -1 : independent from the value of the host variable, the
value NULL is inserted in the corresponding column.

• >=0 : the value of the host variable is inserted in the
corresponding column.

Embedded SQL 258

Database Programming in SQL/ORACLE

Cursors

• Analogous to PL/SQL

• required for processing a resut set that contains more than
one tuple

Cursor operations

• DECLARE <cursor-name> CURSOR FOR <sql statement>

• OPEN <cursor-name>

• FETCH <cursor-name> INTO <varlist>

• CLOSE <cursor-name>

Error Situations

• cursor has not been declared or not opened

• no (further) data has been found

• cursor has been closed, but not reopened

Current of clause analogous to PL/SQL

Embedded SQL 259



Database Programming in SQL/ORACLE

Example

int main() {

EXEC SQL BEGIN DECLARE SECTION;

char cityName[25]; /* output host var */

int cityEinw; /* output host var */

char* landID = "D"; /* input host var */

short ind1, ind2; /* indicator var */

char* uid = "/";

EXEC SQL END DECLARE SECTION;

/* Establish connection to the database */

EXEC SQL CONNECT :uid;

/* Cursor declarieren */

EXEC SQL DECLARE StadtCursor CURSOR FOR

SELECT Name, Einwohner

FROM Stadt

WHERE Code = :landID;

EXEC SQL OPEN StadtCursor; /* open cursor */

printf("Stadt Einwohner\n");

while (1)

{EXEC SQL FETCH StadtCursor INTO :cityName:ind1 ,

:cityEinw INDICATOR :ind2;

if(ind1 != -1 && ind2 != -1)

{ /* keine NULLwerte ausgeben */

printf("%s %d \n", cityName, cityEinw);

}};

EXEC SQL CLOSE StadtCursor; }
Embedded SQL 260

Database Programming in SQL/ORACLE

Host Arrays

• useful if the size of the result set is known, or only a
predefined portion is relevant.

• simplifies the programming, since no cursor is required.

• reduces communication overhead between client and
server.

EXEC SQL BEGIN DECLARE SECTION;

char cityName[25][20]; /* host array */

int cityPop[20]; /* host array */

EXEC SQL END DECLARE SECTION;

...

EXEC SQL SELECT Name, Population

INTO :cityName, :cityPop

FROM City

WHERE Code = ’D’;

fetches 20 tuples to the two host arrays.

Embedded SQL 261



Database Programming in SQL/ORACLE

PL/SQL

• Oracle Pro∗C/C++ precompiler supports PL/SQL blocks.

• PL/SQL block can be used in place of an SQL statement.

• PL/SQL block reduces communication overhead between
client and server.

• Frame for communication:

EXEC SQL EXECUTE

DECLARE

...

BEGIN

...

END;

END-EXEC;

Static vs. Dynamic SQL

SQL statements can be composed by string operations.
Depending on the statements, there are several commands
how to submit these statements to the database.

Embedded SQL 262

Database Programming in SQL/ORACLE

Transactions

• Application program is regarded as a closed transaction, if
it is not divided by COMMIT- or ROLLBACK-commands

• In Oracle, after leaving a program, COMMIT is executed
automatically

• DDL statements execute COMMIT automatically before being
executed themselves

• the database connection is shut down by
EXEC SQL COMMIT RELEASE; or
EXEC SQL ROLLBACK RELEASE;

Savepoints

• Transaction can be divides by savepoints.

• Syntax : EXEC SQL SAVEPOINT <name>

• ROLLBACK to an earlier savepoint deleted all savepoints
in-between.

Exception Handling Mechanism

• SQL Communications Area (SQLCA)

• WHENEVER-Statement
Embedded SQL 263



Database Programming in SQL/ORACLE

SQLCA

contains status information about the execution of the most
recent SQL statement:

struct sqlca {

char sqlcaid[8];

long sqlcabc;

long sqlcode;

struct { unsigned short sqlerrml;

char sqlerrmc[70];

} sqlerrm;

char sqlerrp[8];

long sqlerrd[6];

char sqlwarn[8];

char sqlext[8];

};

Semantics of sqlcode:

• 0: statement has been processes without any problems.

• >0: statement has been executed, but a warning occurred.

• <0: statement has not been executed due to a serious
error message.

Embedded SQL 264

Database Programming in SQL/ORACLE

WHENEVER-Statement

specifies actions that have to be executed automatically by the
DBMS in case of an error.

EXEC SQL WHENEVER <condition> <action>;

<condition>

• SQLWARNING: the most recent statement caused a warning
different from “no data found” (cf. sqlwarn). This
corresponds to sqlcode > 0, but 6= 1403.

• SQLERROR: the most recent statement caused a serious
error. Tis corresponds to sqlcode < 0.

• NOT FOUND: SELECT INTO or FETCH did not return any more
answer tuple. This corresponds to sqlcode 1403.

<action>

• CONTINUE: the program continues with the subsequent
statement.

• DO flq proc_name>: invoke a procedure (error handling);
DO break for exiting a loop.

• GOTO <label>: jump to the given label.

• STOP: the program is left without commit (exit()), a rollback

is executed.

Embedded SQL 265



Database Programming in SQL/ORACLE

Java and Databases

• Java: platform-independent

• if a Java Virtual Machine is available, Java programs can
be executed.

• API’s: Application Programming Interfaces; collections of
classes and interfaces that provide a certain functionality.

JDBC: API for database access (Java DataBase Connectivity)

• interface for (remote) access to a database from Java
programs

• application can be programmed independently from the
underlying DBMS

• translates the ODBC idea to Java

• common base is the X/Open SQL CLI (Call Level Interface)
Standard

JDBC 266

D
at

ab
as

e
P

ro
gr

am
m

in
g

in
S

Q
L/

O
R

A
C

LE

JD
B

C
A

rc
hi

te
ct

ur
e

JD
B

C
-O

D
B

C
-

D
riv

er

D
B

,w
hi

ch
is

ac
ce

ss
ib

le
by

O
D

B
C

dr
iv

er

Ja
va

P
ro

gr
am

JD
B

C
-D

riv
er

-

M
an

ag
er

O
ra

cl
e-

D
riv

er
O

ra
cl

e-
D

B

. . .
. . .

S
yb

as
e-

D
riv

er
S

yb
as

e-
D

B

JD
B

C
26

7



Database Programming in SQL/ORACLE

JDBC Architecture

• core: driver manager

• below: driver for individual DBMSs

Types of drivers:

• Goal:

– DBMS-Client-Server-Network-Protocol with pure Java
drivers: JDBC-calls are translated to the DBMS-Network
protocol. JDBC-client directly calls the DBMS server.

– JDBC-Net with pure Java driver: JDBC calls are translated
to the JDBC-Network protocol. At the server, they are
translated into a certain DBMS-Protocol.

• as temporary solution:

– JDBC-ODBC-Bridge and ODBC-Driver: ODBC driver is
used via a JDBC-ODBC-Bridge.

– Native API: JDBC calls are translated into calls of the
client-APIs of the corresponding database vendors.

JDBC 268

Database Programming in SQL/ORACLE

JDBC-API

• flexible:

– Application can be programmed independently from the
underlying DBMS

– de facto: portability only in the SQL-2 standard (stored
procedures, object-relational features)

• “low-level”:

– statements are submitted as strings

– in contrast to Embedded SQL, program variables in
SQL commands are not allowed

Under development:

• Embedded SQL for Java

• direct mapping of tables and tuples to Java classes

JDBC 269



Database Programming in SQL/ORACLE

JDBC-Functionality

• Establishing a connection to the database
(DriverManager, Connection)

• submission of SQL statements to the database (Statement
and subclasses)

• processing of the result set (ResultSet)

JDBC 270

Database Programming in SQL/ORACLE

JDBC Driver Manager

DriverManager

• registration and administration of drivers

• selects a suitable driver when a connection to some DB is
requested

• establishes a connection to the requested DB

• Only one DriverManager required.

⇒ class DriverManager:

– only static methods (operating on the class)

– constructor is private (impossible to create instances)

Required drivers must be registered:

DriverManager.registerDriver(driver*)

In the SQL training for the Oracle driver:

DriverManager.registerDriver

(new oracle.jdbc.driver.OracleDriver());

creates a new instance of the Oracle driver and “gives” it to the
Driver manager.

JDBC 271



Database Programming in SQL/ORACLE

Establishing a Connection

• Invocation of the DriverManager:

Connection <name> =

DriverManager.getConnection

(<jdbc-url>, <user-id>, <passwd>);

• Database is uniquely identified by the JDBC-URL

JDBC-URL:

• jdbc:<subprotocol>:<subname>

• <subprotocol> identifies the driver and access mechanism

• <subname> identifies the database

SQL training:

jdbc:oracle:<driver-name>:

@<IP-Address DB Server>:<Port>:<SID>

String url =

’jdbc:oracle:thin:@132.230.150.11:1521:o901’;

Connection conn =

DriverManager.getConnection(url,’jdbc_1’,’jdbc_1’);

returns an opened connection instance conn.

Close a connection: conn.close();

JDBC 272

Database Programming in SQL/ORACLE

Submitting SQL Statements

Statement objects:

• are created by invocation of methods of an existing
connection <connection>.

• Statement: simple SQL statements without parameters

• PreparedStatement: precompiled queries, queries with
parameters

• CallableStatement: invocation of stored procedures
(PL/SQL)

JDBC 273



Database Programming in SQL/ORACLE

Class “Statement”

Statement <name> = <connection>.createStatement();

Let <string> an SQL statement without semicolon.

• ResultSet <statement>.executeQuery(<string>):
queries against the database. A result set is returned.

• int <statement>.executeUpdate(<string>):
SQL statements that change the database. The return
value indicates how many tuples have been effected.

• <statement>.execute(<string>):
(sequences of) statements that return more than one result
set.
Result sets are then processed by invoking methods of the
statement object (see later).

A statement object can be reused for submitting SQL
statements arbitrarily often.

A statement object can be closed by its close() method.

JDBC 274

Database Programming in SQL/ORACLE

Handling of Result Sets

Class “ResultSet”:

ResultSet <name> = <statement>.executeQuery(<string>);

• virtual table that is accessible from the “Host language” – in
this case, Java.

• ResultSet object maintains a cursor which can be moved
by

<result-set>.next();

to the subsequent tuple.

• <result-set>.next()

returns the value false if all tuples have been processed.

ResultSet countries =

stmt.executeQuery(“SELECT Name, Code, Population

FROM Country”);

Name code Population

Germany D 83536115

Sweden S 8900954

Canada CDN 28820671

Poland PL 38642565

Bolivia BOL 7165257

.. .. ..
JDBC 275



Database Programming in SQL/ORACLE

Handling of Result Sets

• access to individual columns of the tuple where the cursor
is currently placed by

<result-set>.get<type>(<attribute>)

• where <type> is a Java data type,

Java type get method

INTEGER getInt

REAL, FLOAT getFloat

BIT getBoolean

CHAR, VARCHAR getString

DATE getDate

TIME getTime

<getString> does always work.

• <attribute> can be given by the attribute name or the
column index.

countries.getString(“Code”);

countries.getInt(“Population”);

countries.getInt(3);

• For get<type>, the values of the result tuple (SQL-data
types) are converted into Java types.

JDBC 276

D
at

ab
as

e
P

ro
gr

am
m

in
g

in
S

Q
L/

O
R

A
C

LE

H
an

dl
in

g
of

R
es

ul
tS

et
s

c
l
a
s
s

H
e
l
l
o

{

p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n

(
S
t
r
i
n
g

a
r
g
s

[
]
)

t
h
r
o
w
s

S
Q
L
E
x
c
e
p
t
i
o
n

{

/
/

l
o
a
d

t
h
e

O
r
a
c
l
e
d
r
i
v
e
r

D
r
i
v
e
r
M
a
n
a
g
e
r
.
r
e
g
i
s
t
e
r
D
r
i
v
e
r
(
n
e
w

o
r
a
c
l
e
.
j
d
b
c
.
d
n
l
d
d
r
i
v
e
r
.
O
r
a
c
l
e
D
r
i
v
e
r
(
)
)
;

/
/

c
o
n
n
e
c
t

t
o

t
h
e

d
a
t
a
b
a
s
e

S
t
r
i
n
g

u
r
l

=
"
j
d
b
c
:
o
r
a
c
l
e
:
d
n
l
d
t
h
i
n
:
@
1
3
2
.
2
3
0
.
1
5
0
.
1
6
1
:
1
5
2
1
:
t
e
s
t
"
;

C
o
n
n
e
c
t
i
o
n

c
o
n
n

=
D
r
i
v
e
r
M
a
n
a
g
e
r
.
g
e
t
C
o
n
n
e
c
t
i
o
n
(
u
r
l
,
:
u
s
e
r
n
a
m
e
,
:
p
a
s
s
w
d
)
;

/
/

s
u
b
m
i
t

a
q
u
e
r
y

t
o

t
h
e

d
a
t
a
b
a
s
e

S
t
a
t
e
m
e
n
t

s
t
m
t

=
c
o
n
n
.
c
r
e
a
t
e
S
t
a
t
e
m
e
n
t
(
)
;

R
e
s
u
l
t
S
e
t

r
s
e
t

=
s
t
m
t
.
e
x
e
c
u
t
e
Q
u
e
r
y
(
"
S
E
L
E
C
T

N
a
m
e
,

P
o
p
u
l
a
t
i
o
n

F
R
O
M

C
i
t
y
"
)
;

w
h
i
l
e

(
r
s
e
t
.
n
e
x
t

(
)
)

{
/
/

p
r
o
c
e
s
s

t
h
e

r
e
s
u
l
t

s
e
t

S
t
r
i
n
g

s
=

r
s
e
t
.
g
e
t
S
t
r
i
n
g
(
1
)
;

i
n
t

i
=

r
s
e
t
.
g
e
t
I
n
t
(
"
P
o
p
u
l
a
t
i
o
n
"
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n

(
s

+
"

"
+

i
"
\
n
"
)
;

}

}

} JD
B

C
27

7



Database Programming in SQL/ORACLE

Handling of Result Sets

JDBC Data Types

• JDBC stands in-between Java (object types) and SQL
(several types).

• java.sql.types defines generic SQL types which are
used by JDBC:

Java type JDBC-SQL type

String CHAR, VARCHAR

java.math.BigDecimal NUMBER, NUMERIC, DECIMAL

boolean BIT

byte TINYINT

short SMALLINT

int INTEGER

long BIGINT

float REAL

double FLOAT, DOUBLE

java.sql.Date DATE (day, month, year)

java.sql.Time TIME (hour, minute, second)

These are also used for describing metadata.

JDBC 278

D
at

ab
as

e
P

ro
gr

am
m

in
g

in
S

Q
L/

O
R

A
C

LE

H
an

dl
in

g
of

R
es

ul
tS

et
s

In
fo

rm
at

io
ns

ab
ou

tc
ol

um
ns

of
th

e
re

su
lt

se
t:

R
e
s
u
l
t
S
e
t
M
e
t
a
D
a
t
a

<
n
a
m
e

>
=

<
r
e
s
u
l
t
-
s
e
t

>
.
g
e
t
M
e
t
a
D
a
t
a
(
)
;

cr
ea

te
s

a
R
e
s
u
l
t
S
e
t
M
e
t
a
D
a
t
a

ob
je

ct
th

at
co

nt
ai

ns
in

fo
rm

at
io

n
ab

ou
tt

he
re

su
lt

se
t:

M
et

ho
d

D
es

cr
ip

tio
n

in
tg

et
C

ol
um

nC
ou

nt
()

nu
m

be
r

of
co

lu
m

ns
of

th
e

re
su

lt
se

t

S
tr

in
g

ge
tC

ol
um

nL
ab

el
(in

t)
at

tr
ib

ut
e

na
m

e
of

th
e

it
h

co
lu

m
n

<
in

t>

S
tr

in
g

ge
tT

ab
le

N
am

e(
in

t)
ta

bl
e

na
m

e
of

th
e

it
h

co
lu

m
n

<
in

t>

S
tr

in
g

ge
tS

ch
em

aN
am

e(
in

t)
sc

he
m

a
na

m
e

of
th

e
it

h
co

lu
m

n
<
in

t>

in
tg

et
C

ol
um

nT
yp

e(
in

t)
JD

B
C

ty
pe

of
th

e
it

h
co

lu
m

n
<
in

t>

S
tr

in
g

ge
tC

ol
um

nT
yp

eN
am

e(
in

t)
un

de
rly

in
g

D
B

M
S

ty
pe

of
th

e
it

h
co

lu
m

n
<
in

t>

JD
B

C
27

9



Database Programming in SQL/ORACLE

Handling of Result Sets

• no NULL values in Java:

<resultSet>.wasNULL()

tests whether the most recently read column value was
NULL.

Example: output the current row of the result set

ResultSetMetaData rsetmetadata = rset.getMetaData();

int numCols = rsetmetadata.getColumnCount();

for(i=1; i<=numCols; i++) {

String returnValue = rset.getString(i);

if (rset.wasNull())

System.out.println ("null");

else

System.out.println (returnValue);

}

• The method close() closes a ResultSet object explicitly.

JDBC 280

Database Programming in SQL/ORACLE

Prepared Statements

PreparedStatement <name> =

<connection>.prepareStatement(<string>);

• SQL statement <string> is precompiled.

• thus, the statement is contained in the state of the object

• more efficient than Statement if some statement has to be
executed several times.

• depending on <string>, only one of the (parameterless!)
methods

– <prepared-statement>.executeQuery(),

– <prepared-statement>.executeUpdate() or

– <prepared-statement>.execute()

is applicable.

JDBC 281



Database Programming in SQL/ORACLE

Prepared Statements: Parameters

• Input parameters are represented by “?”

PreparedStatement pstmt =

conn.prepareStatement("SELECT Population

FROM Country

WHERE Code = ?");

• “?”-parameters are assigned to values by

<prepared-statement>.set<type>(<pos>,<value>);

before a PreparedStatement is submitted.

• <type>: Java data type,

• <pos>: position of the parameter to be set,

• <value>: value.

pstmt.setString(1,"D");

ResultSet rset = pstmt.ExecuteQuery();

...

pstmt.setString(1,"CH");

ResultSet rset = pstmt.ExecuteQuery();

...

• Null values are set by

setNULL(<pos>,<type>);

where <type> is the JDBC type of this column:

pstmt.setNULL(1,Types.String);

JDBC 282

Database Programming in SQL/ORACLE

Callable Statements: Invoke Stored Procedures

• Stored procedures and functions are created by

<statement>.executeUpdate(<string>);

(<string> is of the form CREATE PROCEDURE ...)

s = ’CREATE PROCEDURE bla() IS BEGIN ... END’;

stmt.executeUpdate(s);

• the procedure invocation is then created as a
CallableStatement object:

• invocation syntax of procedures differs amongst the DBMS
products

⇒ JDBC uses a generic syntax via an escape-sequence
(which is translated by the driver)

CallableStatement <name> =

<connection>.prepareCall("{call <procedure>}");

cstmt = conn.prepareCall("{call bla()}");

JDBC 283



Database Programming in SQL/ORACLE

Callable Statements with Parameters

s = ’CREATE FUNCTION

distance(city1 IN Name, city2 IN Name)

RETURN NUMBER IS BEGIN ... END’;

stmt.executeUpdate(s);

• Parameters:

CallableStatement <name> =

<connection>.prepareCall("{call <procedure>(?,...,?)}");

• Return value of functions:

CallableStatement <name> =

<connection>.prepareCall

("{? = call <procedure>(?,...,?)}");

cstmt = conn.prepareCall("{? = call distance(?,?)}");

• for OUT-parameters and the return value, the JDBC data
type of the parameters must first be registered by

<callable-statement>.registerOutParameter

(<pos>,java.sql.Types.<type>);

cstmt.registerOutParameter(1,java.sql.types.number);

JDBC 284

Database Programming in SQL/ORACLE

Callable Statements with Parameters

• Preparations (see above)

cstmt = conn.prepareCall("{? = call distance(?,?)}");

cstmt.registerOutParameter(1,java.sql.types.number);

• IN parameters are set by set<type>:

cstmt.setString(2,’Freiburg’);

cstmt.setString(3,’Berlin’);

• invocation by

ResultSet <name> =

<callable-statement>.executeQuery();

or

<callable-statement>.executeUpdate();

or

<callable-statement>.execute();

in our example: cstmt.execute();

• OUT-parameters are read by get<type>:

int distance = cstmt.getInt(1);

JDBC 285



Database Programming in SQL/ORACLE

Sequential Execution

• SQL-Statements that return a sequence of result sets:

• <statement>.execute(<string>),
<prepared-statement>.execute(),
<callable-statement>.execute()

• Often <string> is generated dynamically

• getResultSet() or getUpdateCount():
gets the next return value or update count.

• getMoreResults() and then again
getResultSet() or getUpdateCount():
proceed to the next result.

JDBC 286

Database Programming in SQL/ORACLE

Sequential Execution

• getResultSet(): if the next result is a result set, this is
returned. If no next result is available, or the next result is
an update count, null is returned.

• getUpdateCount(): if the next result is an update count,
this (n ≥ 0) is returned. If no next result is available, or the
next result is a result set, -1 is returned.

• getMoreResults(): true, if the next result is a result set,
false, if it is an update count or there are no more results.

• test if all results are processed:

((<stmt>.getResultSet() == null) &&

(<stmt>.getUpdateCount() == -1))

or

((<stmt>.getMoreResults() == false) &&

(<stmt>.getUpdateCount() == -1))

JDBC 287



Database Programming in SQL/ORACLE

Handling a Sequence of Results

stmt.execute(queryStringWithUnknownResults);

while (true) {

int rowCount = stmt.getUpdateCount();

if (rowCount > 0) {

System.out.println("Rows changed = " + count);

stmt.getMoreResults();

continue;

}

if (rowCount == 0) {

System.out.println("No rows changed");

stmt.getMoreResults();

continue;

}

ResultSet rs = stmt.getResultSet();

if (rs != null) {

..... // process metadata

while (rs.next())

{ ....} // process result set

stmt.getMoreResults();

continue;

}

break;

}

JDBC 288

Database Programming in SQL/ORACLE

Further SQL/Oracle Tools

• Dynamic SQL: SQL statements are generated in in PL/SQL
at runtime as strings, and are then submitted to the
database.

• ORACLE8i: built-in Java Virtual Machine, access to the file
system,
i= internet: XML-interface, Web-Application-Server etc.

• ORACLE-Web Server/Internet Application Server (9i):
HTML pages can be generated depending on the database
contents.

• by the most recent packages and extensions (IAS, Internet
File System Server) the difference between the database
and the operating system diminishes.

JDBC 289



Database Programming in SQL/ORACLE

ORACLE8?

+ complex data types

+ Objects: object methods, object references, path
expressions
⇒ user-friendly interface possible
(vgl. add_member, is_member )

– Nested Tables:

– Storage: as separate tables (STORE AS ...)

– DML: cumbersome SELECT FROM THE, TABLE ..., CAST
MULTISET

– usage: query must only consider a single nested table
⇒ cursor requires

– no advantages ??

– modifications of object types not supported
⇒ object types not suitable for storage.

• “I think this is the power of the system. Object Views.”

Summary 290

D
at

ab
as

e
P

ro
gr

am
m

in
g

in
S

Q
L/

O
R

A
C

LE

D
at

ab
as

e-
A

rc
hi

te
ct

ur
e

O
bj

ec
t-

V
ie

w
1

O
bj

ec
t-

V
ie

w
2

O
bj

ec
t-

V
ie

w
3

re
la

tio
na

lS
to

ra
ge

Im
pl

em
en

ta
tio

ns

of
ob

je
ct

ty
pe

sm
et

ho
ds

-

A
uf

ru
fe

S
um

m
ar

y
29

1



Database Programming in SQL/ORACLE

• Modifications of the relational storage: easy.
Implementations of the object types can be adapted
without changing the user interface (external schema).

• Modifications of the object types: independent of the
storage (Views). Possible to delete object types completely
and rebuild new ones without losing data.

• Adding functionality: redefine or add suitable object types.

Summary 292


